Introduction: Intraoperative goal-directed hemodynamic therapy (GDHT) is a cornerstone of enhanced recovery protocols. We hypothesized that use of an advanced noninvasive intraoperative hemodynamic monitoring system to guide GDHT may decrease intraoperative hypotension (IOH) and improve perfusion during pancreatic resection.
Methods: The monitor uses machine learning to produce the Hypotension Prediction Index to predict hypotensive episodes.
General anesthetics adversely alters the distribution of infused fluid between the plasma compartment and the extravascular space. This maldistribution occurs largely from the effects of anesthetic agents on lymphatic pumping, which can be demonstrated by macroscopic fluid kinetics studies in awake versus anesthetized patients. The magnitude of this effect can be appreciated as follows: a 30% reduction in lymph flow may result in a fivefold increase of fluid-induced volume expansion of the interstitial space relative to plasma volume.
View Article and Find Full Text PDFBackground: Physiological studies suggest that the interstitial space contains 2 fluid compartments, but no analysis has been performed to quantify their sizes and turnover rates.
Methods: Retrospective data were retrieved from 270 experiments where Ringer's solution of between 238 and 2750 mL (mean, 1487 mL) had been administered by intravenous infusion to awake and anesthetized humans (mean age 39 years, 47% females). Urinary excretion and hemoglobin-derived plasma dilution served as input variables in a volume kinetic analysis using mixed-models software.
Fluid normally exchanges freely between the plasma and interstitial space and is returned primarily via the lymphatic system. This balance can be disturbed by diseases and medications. In inflammatory disease states, such as sepsis, the return flow of fluid from the interstitial space to the plasma seems to be very slow, which promotes the well-known triad of hypovolemia, hypoalbuminemia, and peripheral edema.
View Article and Find Full Text PDFCrit Care
September 2022
Preclinical studies in animals and human clinical trials question whether the endothelial glycocalyx layer is a clinically important permeability barrier. Glycocalyx breakdown products in plasma mostly originate from 99.6-99.
View Article and Find Full Text PDFBackground And Aims: Increased capillary filtration may paradoxically accelerate vascular refill of both fluid and albumin from the interstitial space, which is claimed to be edema-preventing. We characterized this proposed mechanism, called "interstitial washdown", by kinetic analyses of the hemodilution induced by intravenous infusion of crystalloid fluid during 3 distinct physiological states.
Methods: Greater plasma dilution of hemoglobin as compared to albumin during fluid therapy indicated recruitment of albumin, which was compared to the flow of interstitial fluid to the plasma as indicated by population volume kinetic analysis.
Background: Vascular dysfunction is a checkpoint to the development of hypertension. Heparan sulfate proteoglycans (HSPG) participate in nitric oxide (NO) and calcium signaling, key regulators of vascular function. The relationship between HSPG-mediated NO and calcium signaling and vascular dysfunction has not been explored.
View Article and Find Full Text PDFActa Anaesthesiol Scand
May 2021
Background: The number of studies measuring breakdown products of the glycocalyx in plasma has increased rapidly during the past decade. The purpose of the present systematic review was to assess the current knowledge concerning the association between plasma concentrations of glycocalyx components and structural assessment of the endothelium.
Methods: We performed a literature review of Pubmed to determine which glycocalyx components change in a wide variety of human diseases and conditions.
J Trauma Acute Care Surg
February 2021
Syndecan-1 (Sdc-1) and glypican-1 (Gpc-1) are 2 important proteoglycans found in the glycocalyx and believed to govern transvascular distribution of fluid and protein. In this translational study, we assessed Sdc-1 and Gpc-1 knockout (KO) on whole body water balance after an intravenous volume challenge. Sdc-1 and Gpc-1 KO mice had higher starting blood water content versus strain-matched controls.
View Article and Find Full Text PDFCardiovasc Eng Technol
December 2020
Purpose: Acute increases in hydrostatic pressure activate endothelial signaling pathways that modulate barrier function and vascular permeability. We investigated the role the glycocalyx and established mechanotransduction pathways in pressure-induced albumin transport across rat lung microvascular endothelial cells.
Methods: Rat lung microvascular endothelial cells (RLMEC) were cultured on Costar Snapwell chambers.
Acta Anaesthesiol Scand
August 2020
The Revised (or "Extended") Starling principle is based on highly controlled laboratory-based frog and rodent experiments and remains a hypothesis awaiting clinical validation. A key point is that the endothelial glycocalyx layer moves the oncotic gradient from being between the plasma and the interstitium to between the plasma and a virtually protein-free space between the glycocalyx and the endothelial cell membrane, which dramatically changes the prerequisites for fluid absorption from tissue to plasma. However, many experimental and clinical observations in humans agree poorly with the new microcirculatory proposals.
View Article and Find Full Text PDFNorepinephrine (NE) is the naturally occurring adrenergic agonist that is released in response to hypotension, and it is routinely administered in clinical settings to treat moderate to severe hypotension that may occur during general anesthesia and shock states. Although NE has incontestable beneficial effects on blood pressure maintenance during hypotensive conditions, deleterious effects of NE on endothelial cell function may occur. In particular, the role of reactive oxygen species (ROS) and NADPH oxidase (Nox) on the deleterious effects of NE on endothelial cell function have not been fully elucidated.
View Article and Find Full Text PDFBackground: Sevoflurane with its antiinflammatory properties has shown to decrease mortality in animal models of sepsis. However, the underlying mechanism of its beneficial effect in this inflammatory scenario remains poorly understood. Macrophages play an important role in the early stage of sepsis as they are tasked with eliminating invading microbes and also attracting other immune cells by the release of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α.
View Article and Find Full Text PDFAims: Increases in hydrostatic pressure results in endothelial hyperpermeability via eNOS-dependent pathways. Ropivacaine is known to inhibit eNOS activation and to attenuate lung injury. Herein, we sought to determine if ropivacaine regulates pressure-induced lung endothelial hyperpermeability.
View Article and Find Full Text PDFUncontrolled inflammatory response during sepsis predominantly contributes to the development of multiorgan failure and lethality. However, the cellular and molecular mechanisms for excessive production and release of proinflammatory cytokines are not clearly defined. In this study, we show the crucial role of the GTPase Ras-related protein in brain (Rab)1a in regulating the nucleotide binding domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and lung inflammatory injury.
View Article and Find Full Text PDFAcute increases in left ventricular end diastolic pressure (LVEDP) can induce pulmonary edema (PE). The mechanism(s) for this rapid onset edema may involve more than just increased fluid filtration. Lung endothelial cell permeability is regulated by pressure-dependent activation of nitric oxide synthase (NOS).
View Article and Find Full Text PDFPurpose: Endocan, a component of the endothelial glycocalyx (EG), has been linked with respiratory failure in sepsis. This study explored the temporal patterns of three EG biomarkers, including endocan, and their relationships with inflammation and respiratory failure.
Materials And Methods: Plasma endocan, syndecan-1, and hyaluronan concentrations were measured in Emergency Department (ED) patients with sepsis due to pneumonia (n = 44) on ED arrival (T0), 1 h (T1), 3 h (T3) and 12-24 h (T24) later, with change over time tested using mixed regression models.
Background: Trauma is the leading cause of death and disability in patients aged 1-46 y. Severely injured patients experience considerable blood loss and hemorrhagic shock requiring treatment with massive transfusion of red blood cells (RBCs). Preclinical and retrospective human studies in trauma patients have suggested that poorer therapeutic efficacy, increased severity of organ injury, and increased bacterial infection are associated with transfusion of large volumes of stored RBCs, although the mechanisms are not fully understood.
View Article and Find Full Text PDFHypercapnic acidosis (HCA) has beneficial effects in experimental models of lung injury by attenuating inflammation and decreasing pulmonary edema. However, HCA increases pulmonary vascular pressure that will increase fluid filtration and worsen edema development. To reconcile these disparate effects, we tested the hypothesis that HCA inhibits endothelial mechanotransduction and protects against pressure-dependent increases in the whole lung filtration coefficient (K).
View Article and Find Full Text PDFBackground: Heparanase, a mammalian endo-β-D-glucoronidase that specifically degrades heparan sulfate, has been implicated in inflammation and ischemic stroke. However, the role of heparanase in neuroinflammatory response in subarachnoid hemorrhage (SAH) has not yet been investigated. This study was designed to examine the association between heparanase expression and neuroinflammation during subarachnoid hemorrhage.
View Article and Find Full Text PDF