Under China's "Dual Carbon Goal", the wastewater treatment system plays a crucial role in the country's efforts to reduce greenhouse gas (GHG) emissions. However, a lack of baseline emissions data poses challenges for decarbonization efforts. This study aims to profile and diagnose the GHG emissions of China's entire wastewater system and identify key contributing factors.
View Article and Find Full Text PDFClimate change and carbon emissions are increasingly becoming a global concern, and thus wastewater treatment plants (WWTPs) are also receiving extensive attention due to direct greenhouse gas (GHG) emissions of methane (CH) and nitrous oxide (NO). Although there have been many emission factors (EFs) of CH and NO in literature, they are changeful due to different processes and boundaries, which limits their values for reference and comparison. With this study, in situ monitored CH and NO data reported in literature were retrieved for recalculating their EFs.
View Article and Find Full Text PDFThe interaction between extracellular polymeric substances (EPS) in municipal sludge and antibiotics in wastewater is critical in wastewater treatment, resource recovery, and sludge management. Therefore, it is increasingly urgent to investigate the distribution coefficient (Log K) of sulfonamide antibiotics (SAs) in EPS, particularly in sludge-derived dissolved organic carbon (DOC) and aqueous phase systems. Herein, through balance experiments, the concentrations of SAs were determined using alkaline extraction EPS (AEPS) and alginate-like extracellular polymer (ALE) systems, and the Log K values were determined.
View Article and Find Full Text PDFThe recovery of biopolymers, particularly alginate-like extracellular polymers, from municipal sludge represents a promising step toward sustainable sludge treatment practices. Originating from wastewater plants in complexly polluted environments, alginate-like extracellular polymers carry potential environmental risks concerning their reuse. This study employs ultrahigh-performance liquid chromatography-tandem mass spectrometry to investigate the distribution coefficients and occurrence of alginate-like extracellular polymers and sulfamethoxazole.
View Article and Find Full Text PDFWith the wide application of floating treatment wetland (FTW), the limited performance of FTWs should be improved. A comprehensive review is accordingly necessary to summarize the state-of-the-art on FTWs for performance improvement. An attempt has been made to gain information from literature about technologies to enhance the performance of FTWs.
View Article and Find Full Text PDFHuan Jing Ke Xue
February 2023
Bioresour Technol
January 2023
Pyrrhotite is a promising electron donor for autotrophic denitrification. Using pyrrhotite as the substrate in constructed wetlands (CWs) can enhance the nitrogen removal performance in carbon-limited wastewater treatment. However, the role of plants in pyrrhotite-integrated CW is under debate as the oxygen released from plant roots may destroy the anoxic condition for autotrophic denitrification.
View Article and Find Full Text PDFEntropy is a concept defined by the second law of thermodynamics. Applying this concept to the world we live in, entropy production must be minimized and negentropy (negative entropy production) should be accelerated, in order to produce a healthy and stable ecological system. The present wastewater treatment, however, contributes to entropy production.
View Article and Find Full Text PDFMicroalgae blooms are always blamed for the interruption of the aquatic environment and pose a risk to the source of drinking water. Meanwhile, microalgae as primary producers are a kind of resource pool and could benefit the environment and contribute to building a circular economy. The lipid and polyhydroxybutyrate (PHB) in the cells of microalgae could be alternatives to fossil fuels and plastics, respectively, which are the culprits of global warming and plastic pollution.
View Article and Find Full Text PDFFloating constructed wetlands (FCWs) have attained tremendous popularity for water purification purposes. However, FCW functions establishment in nutrients removal from carbon-limited wastewater, especially in cold weather, is still a challenge. Here, two drinking water treatment residual (DWTR) based biocarriers (B-I: DWTR cakes, B-II: DWTR cakes combined with woodchips) have been augmented into FCW to enhance the nutrients (N and P) removal performance.
View Article and Find Full Text PDFMicropollutants in wastewater are a set of compounds receiving a growing concern to the environment and human health. As a green and low-cost process, microalgae-based systems (MBSs) have already been demonstrated the ability of micropollutant removal. In the present review, 114 micropollutants and 16 microalgae species in total are summarized and analyzed to present an overview capability of the MBSs.
View Article and Find Full Text PDFIn the recent years many studies have shown that wetland plants play beneficial roles in bioelectricity enhancement in constructed wetland-microbial fuel cell (CW-MFC) because of the exudation of root oxygen and root exudates. In this study, the long-term roles of plants on the bioelectricity generation and contaminant removal were investigated in multi-anode (Anode1 and Anode2) and single cathode CW-MFCs. The electrode distances were 20 cm between Anode1-cathode and 10 cm between Anode2-cathode, respectively.
View Article and Find Full Text PDFAnaerobic digestion (AD) is an effective approach to recovering chemical (organic) energy from excess sludge, but the conversion efficiency for energy is usually not very high. One of the obstacles comes from the severe inhibition of humic acid (HA) on both hydrolytic and methanogenic process on the AD. Therefore, it is necessary to ascertain some effective approaches to relieving the inhibition of HA for obtaining a high methane (CH) yield.
View Article and Find Full Text PDFBy 17 October 2020, the severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused confirmed infection of more than 39,000,000 people in 217 countries and territories globally and still continues to grow. As environmental professionals, understanding how SARS-CoV-2 can be transmitted via water and air environment is a concern. We have to be ready for focusing our attention to the prompt diagnosis and potential infection control procedures of the virus in integrated water and air system.
View Article and Find Full Text PDFThe processes of enhanced biological phosphorus removal (EBPR) have been widely applied in wastewater treatment plants (WWTPs). However, meeting the increasingly stringent effluent discharge standards requires a more stable EBPR performance. Under the circumstances, the identification of genus Tetrasphaera as potential phosphate accumulating organisms (PAOs) has aroused much research interests on them.
View Article and Find Full Text PDFAnaerobic digestion (AD) is a technology for recovering chemical energy as methane from excess sludge/waste. Unfortunately, humic acids (HA) contained in excess sludge can have the effects of inhibiting the efficiency of energy conversion. Based on a batch experiment, the impact of HA on a semi-continuous AD process was sequentially investigated, with the impact on the associated enzymes and microorganisms being measured.
View Article and Find Full Text PDFIn dealing with wastewater, chemical energy has traditionally been perceived as the only source of recoverable energy in moving towards the carbon-neutral operation of wastewater treatment plants. Based on an estimation of practically recoverable energy embedded in municipal wastewater, however, the potential for thermal energy (90% recovery from wastewater) is much higher than for chemical energy (COD, 10% recovery). The carrier of chemical energy (COD) has a high exergy value which should, from a sustainability point of view, be utilized to the greatest extent possible.
View Article and Find Full Text PDFConventional wastewater treatment plants (WWTPs) clean wastewater and minimize water pollution; but, while doing so, they also contribute to air pollution and need energy/material input with associated emissions. However, energy recovery (e.g.
View Article and Find Full Text PDFAluminum-based drinking water treatment residuals (DWTR) were encapsulated by alginate to develop a pelletized media (DWTR-CA beads) for phosphorus (P) adsorption. The beads were successfully manufactured to uniform size and shape requirements. The effects of DWTR powder concentration and particle size, and bead mean size on P adsorption, were investigated.
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2018
The low carbon/nitrogen (C/N) ratio and high nitrate content characteristics of agricultural runoff restricted the nitrogen removal in constructed wetlands (CWs). To resolve such problems, the economically- and easily-obtained (reeds) litters were applied and packed in the surface layer of a surface flow CW as external carbon sources. The results demonstrated that the introduction of the reeds straw increased the C concentration as a result of their decomposition during the CW operation, which will help the denitrification in the ensuing operation of an entire 148 days.
View Article and Find Full Text PDFBioresour Technol
August 2018
Substrate selection is one of the key technical issues for constructed wetlands (CWs), which works for wastewater treatment based mainly on the biofilm principle. In recent years, many alternative substrates have been studied and applied in CWs, and a review is conducive to providing updated information on CW R&D. Based on the intensive research work especially over the last 10 years on the development of emerged substrates (except for the three conventional substrates of soil, sand, and gravel) in CWs, this review was made.
View Article and Find Full Text PDFAn eco-friendly system of green bio-sorption reactor (GBR), constructed by embedding alum sludge-based constructed wetland (AlCW) into a conventional activated sludge process to achieve "1 + 1 > 2", was evaluated under a long-term operation basis. Insight into the pollutants removal, particularly the role of the AlCW in the GBR, was explored and discussed. The results showed that the GBR could achieve 90% and 95% removal for TN and TP (Stage 4), respectively, under the hydraulic and nitrogen loading rate of 2.
View Article and Find Full Text PDFTo improve the sustainability of constructed wetlands (CWs), a novel tiered wetland system integrated with a microbial fuel cell (MFC) was developed in this study. Compared to the single stage CW, chemical oxygen demand (COD) removal efficiency was improved from 83.2% to 88.
View Article and Find Full Text PDFA novel concept was proposed and preliminarily investigated by embedding alum sludge-based constructed wetland into conventional activated sludge system in terms of Green Bio-sorption Reactor (GBR). This novel GBR inherited the aesthetic value of constructed wetland and owned the robust phosphorus (P) adsorption along with the benefit of carriers' addition (dewatered alum sludge). The preliminary demonstration was conducted in a lab-scale sequencing batch reactor (SBR) system without biological phosphorus removal process.
View Article and Find Full Text PDF