Indolizine has been synthesised on the small scale with enhanced yield using a novel Flash Vacuum Pyrolysis method. Electrooxidation of indolizine results in the formation of a redox-active film on the electrode surface. Excellent agreement is found between calculated and experimental indolizine oxidation potentials; a combination of fluorescence and electrochemical studies are consistent with the computational prediction that electroxidation results in the formation of three specific and redox active indolizine dimers.
View Article and Find Full Text PDF2-(Pyrrol-1-yl)phenoxyl, aminyl, thiophenoxyl and benzyl radicals 2a-2d, respectively, were generated in the gas-phase under flash vacuum pyrolysis conditions. In all cases except the phenoxyl, cyclisation took place providing acceptable synthetic routes to the fused heterocycles 11, 14 and 15, respectively. Only sigmatropic rearrangement products were isolated, in low yields, from the phenoxyl 2a.
View Article and Find Full Text PDF