Publications by authors named "Ranajoy Chattopadhyay"

Article Synopsis
  • SARS-CoV-2 leads to severe lung damage due to an excessive immune response, but the triggers for this response are still unclear.
  • Researchers developed a personalized, cost-effective lung organoid model using adult stem cells, allowing them to study how the virus infects lung tissue in a laboratory setting.
  • Their findings show that specific cells in the lung are critical for both viral infection and the immune response, validating the model's usefulness for researching COVID-19 and testing new treatments.
View Article and Find Full Text PDF

SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type-II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19.

View Article and Find Full Text PDF

Chronic diseases, including inflammatory bowel disease (IBD) urgently need new biomarkers as a significant proportion of patients, do not respond to current medications. Inflammation is a common factor in these diseases, and microbial sensing in the intestinal tract is critical to initiate the inflammation. We have identified ELMO1 (engulfment and cell motility protein 1) as a microbial sensor in epithelial and phagocytic cells that turns on inflammatory signals.

View Article and Find Full Text PDF

Advanced and metastatic squamous cell carcinomas (SCC) are common and difficult-to-treat malignancies. We assessed 75 immunotherapy-treated patients with SCC from a clinically annotated database of 2,651 patients, as well as 9,407 patients from a deidentified database for molecular features that might influence checkpoint blockade response. SCCs had higher tumor mutational burdens (TMB) than non-SCCs ( < 0.

View Article and Find Full Text PDF

Noninvasive genomic profiling of tumors may be possible with next-generation sequencing (NGS) of blood-derived circulating tumor DNA (ctDNA), but proof of concept in a large cohort of patients with diverse cancers has yet to be reported. Here we report the results of an analysis of plasma-derived ctDNA from 670 patients with diverse cancers. The tumors represented in the patient cohort were mainly gastrointestinal (31.

View Article and Find Full Text PDF

Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury.

View Article and Find Full Text PDF

Helicobacter pylori induces the antiapoptotic protein myeloid cell leukemia 1 (Mcl1) in human gastric epithelial cells (GECs). Apoptosis of oncogenic protein Mcl1-expressing cells is mainly regulated by Noxa-mediated degradation of Mcl1. We wanted to elucidate the status of Noxa in H.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders.

View Article and Find Full Text PDF

Objectives: Apurinic/apyrimidinic-endonuclease 1 (APE1) heterozygous mice have chronically elevated blood pressure. Renin of the renin-angiotensin (ANG) system for blood pressure maintenance regulates production of ANG II, a vasoactive hormone. Renin expression and secretion from kidney juxtaglomerular cells are regulated by intracellular calcium.

View Article and Find Full Text PDF

Hypoxia-inducible factor 1 (HIF1) consists of a hypoxia-inducible α subunit and a constitutively expressed β subunit. Reactive oxygen species (ROS) induced by Helicobacter pylori stabilize HIF1α in the human gastric epithelium in normoxia. HIF1α plays crucial role in carcinogenesis and has been associated with malignant progression of gastric cancer.

View Article and Find Full Text PDF
Article Synopsis
  • APE-1 is a crucial enzyme for repairing oxidative DNA damage and also plays a role in regulating transcription, which is affected by Helicobacter pylori infection in gastric epithelial cells, leading to increased APE-1 expression and apoptosis.
  • Suppressing APE-1 expression heightens apoptosis during H. pylori infection by activating both the mitochondrial (caspase-9) and extrinsic (caspase-8) pathways; however, overexpressing functional APE-1 reduces this apoptosis, while mutants of APE-1 do not effectively prevent cell death.
  • The study reveals that APE-1's functions—DNA repair and acetylation—differentiate their roles in regulating apoptosis pathways, highlighting its
View Article and Find Full Text PDF

Background & Aims: Helicobacter pylori-induced gastric epithelial cell (GEC) apoptosis is a complex process that includes activation of the tumor suppressor p53. p53-mediated apoptosis involves p53 activation, bax transcription, and cytochrome c release from mitochondria. Apurinic/apyrimidinic endonuclease-1 (APE-1) regulates transcriptional activity of p53, and H pylori induce APE-1 expression in human GECs.

View Article and Find Full Text PDF

Background: Cigarette smoke-induced cellular and molecular mechanisms of lung injury are not clear. Cigarette smoke is a complex mixture containing long-lived radicals, including p-benzosemiquinone that causes oxidative damage. Earlier we had reported that oxidative protein damage is an initial event in smoke-induced lung injury.

View Article and Find Full Text PDF

Human AP-endonuclease (APE1/Ref-1), a central enzyme involved in the repair of oxidative base damage and DNA strand breaks, has a second activity as a transcriptional regulator that binds to several trans-acting factors. APE1 overexpression is often observed in tumor cells and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to such agents. Because the involvement of APE1 in repairing the DNA damage induced by many of these drugs is unlikely, drug resistance may be linked to APE1's transcriptional regulatory function.

View Article and Find Full Text PDF

The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein, plays a central role in the repair of oxidative base damage via the DNA base excision repair (BER) pathway. The mammalian AP-endonuclease (APE1) overexpression is often observed in tumor cells, and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to those agents via induction of apoptosis. Here we show that wild type (WT) but not mutant p53 negatively regulates APE1 expression.

View Article and Find Full Text PDF

The recently characterized enzyme NEIL2 (Nei-like-2), one of the four oxidized base-specific DNA glycosylases (OGG1, NTH1, NEIL1, and NEIL2) in mammalian cells, has poor base excision activity from duplex DNA. To test the possibility that one or more proteins modulate its activity in vivo, we performed mass spectrometric analysis of the NEIL2 immunocomplex and identified Y box-binding (YB-1) protein as a stably interacting partner of NEIL2. We show here that YB-1 not only interacts physically with NEIL2, but it also cooperates functionally by stimulating its base excision activity by 7-fold.

View Article and Find Full Text PDF

AP endonuclease (APE), with dual activities as an endonuclease and a 3' exonuclease, is a central player in repair of oxidized and alkylated bases in the genome via the base excision repair (BER) pathway. APE acts as an endonuclease in repairing AP sites generated spontaneously or after base excision during BER. It also removes the 3' blocking groups in DNA generated directly by ROS or after AP lyase reaction.

View Article and Find Full Text PDF

DNA single-strand breaks (SSB) activate poly (ADP-ribose) polymerase 1 (PARP1), which then polymerizes ADP-ribosyl groups on various nuclear proteins, consuming cellular energy. Although PARP1 has a role in repairing SSB, activation of PARP1 also causes necrosis and inflammation due to depletion of cellular energy. Here we show that the major mammalian apurinic/apyrimidinic (AP) endonuclease-1 (APE1), an essential DNA repair protein, binds to SSB and suppresses the activation of PARP1.

View Article and Find Full Text PDF

Abasic (AP)-endonuclease (APE) is responsible for repair of AP sites, and single-strand DNA breaks with 3' blocking groups that are generated either spontaneously or during repair of damaged or abnormal bases via the DNA base excision repair (BER) pathway in both nucleus and mitochondria. Mammalian cells express only one nuclear APE, 36 kDa APE1, which is essential for survival. Mammalian mitochondrial (mt) BER enzymes other than mtAPE have been characterized.

View Article and Find Full Text PDF

The mammalian abasic-endonuclease1/redox-factor1 (APE1/Ref1) is an essential protein whose subcellular distribution depends on the cellular physiological status. However, its nuclear localization signals have not been studied in detail. We examined nuclear translocation of APE1, by monitoring enhanced green fluorescent protein (EGFP) fused to APE1.

View Article and Find Full Text PDF