Publications by authors named "Rana Zia Ur Rehman"

Fatigue is prevalent in immune-mediated inflammatory and neurodegenerative diseases, yet its assessment relies largely on patient-reported outcomes, which capture perception but not fluctuations over time. Wearable sensors, like inertial measurement units (IMUs), offer a way to monitor daily activities and evaluate functional capacity. This study investigates the relationship between sit-to-stand and stand-to-sit transitions and self-reported physical and mental fatigue in participants with Parkinson's, Huntington's, rheumatoid arthritis, systemic lupus erythematosus, primary Sjögren's syndrome and inflammatory bowel disease.

View Article and Find Full Text PDF

Wearables with photoplethysmography (PPG) sensors are being increasingly used in clinical research as a non-invasive, inexpensive method for remote monitoring of physiological health. Ensuring the accuracy and reliability of PPG-derived measurements is critical, as inaccuracies can impact research findings and clinical decisions. This paper systematically compares heart rate (HR) and heart rate variability (HRV) measures from PPG against an electrocardiogram (ECG) monitor in free-living settings.

View Article and Find Full Text PDF

Background: Many individuals with neurodegenerative (NDD) and immune-mediated inflammatory disorders (IMID) experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, an essential component of health, and may present objective evidence of fatigue.

View Article and Find Full Text PDF

Current assessments of fatigue and sleepiness rely on patient reported outcomes (PROs), which are subjective and prone to recall bias. The current study investigated the use of gait variability in the "real world" to identify patient fatigue and daytime sleepiness. Inertial measurement units were worn on the lower backs of 159 participants (117 with six different immune and neurodegenerative disorders and 42 healthy controls) for up to 20 days, whom completed regular PROs.

View Article and Find Full Text PDF

Accurate and reliable measurement of real-world walking activity is clinically relevant, particularly for people with mobility difficulties. Insights on walking can help understand mobility function, disease progression, and fall risks. People living in long-term residential care environments have heterogeneous and often pathological walking patterns, making it difficult for conventional algorithms paired with wearable sensors to detect their walking activity.

View Article and Find Full Text PDF

Background: Real-world walking speed (RWS) measured using wearable devices has the potential to complement the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) for motor assessment in Parkinson's disease (PD).

Objective: Explore cross-sectional and longitudinal differences in RWS between PD and older adults (OAs), and whether RWS was related to motor disease severity cross-sectionally, and if MDS-UPDRS III was related to RWS, longitudinally.

Methods: 88 PD and 111 OA participants from ICICLE-GAIT (UK) were included.

View Article and Find Full Text PDF

Accurate measurement of sedentary behaviour in older adults is informative and relevant. Yet, activities such as sitting are not accurately distinguished from non-sedentary activities (e.g.

View Article and Find Full Text PDF

Problems with fatigue and sleep are highly prevalent in patients with chronic diseases and often rated among the most disabling symptoms, impairing their activities of daily living and the health-related quality of life (HRQoL). Currently, they are evaluated primarily Patient Reported Outcomes (PROs), which can suffer from recall biases and have limited sensitivity to temporal variations. Objective measurements from wearable sensors allow to reliably quantify disease state, changes in the HRQoL, and evaluate therapeutic outcomes.

View Article and Find Full Text PDF

Unlabelled: Parkinson's disease (PD) is a common neurodegenerative disease. PD misdiagnosis can occur in early stages. Gait impairment in PD is typical and is linked with an increased fall risk and poorer quality of life.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disease presenting with both motor and non-motor symptoms. Among PD motor symptoms, gait impairments are common and evolve over time. PD motor symptoms severity can be evaluated using clinical scales such as the Movement Disorder Society Unified Parkinson's Rating Scale part III (MDS-UPDRS-III), which depend on the patient's status at the time of assessment and are limited by subjectivity.

View Article and Find Full Text PDF

Falls are the leading cause of mortality, morbidity and poor quality of life in older adults with or without neurological conditions. Applying machine learning (ML) models to gait analysis outcomes offers the opportunity to identify individuals at risk of future falls. The aim of this study was to determine the effect of different data pre-processing methods on the performance of ML models to classify neurological patients who have fallen from those who have not for future fall risk assessment.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disorder resulting in a range of mobility deficits affecting gait, balance and turning. In this paper, we present: (i) the development and validation of an algorithm to detect turns during gait; (ii) a method to extract turn characteristics; and (iii) the classification of PD using turn characteristics. Thirty-seven people with PD and 56 controls performed 180-degree turns during an intermittent walking task.

View Article and Find Full Text PDF

Neurological patients can have severe gait impairments that contribute to fall risks. Predicting falls from gait abnormalities could aid clinicians and patients mitigate fall risk. The aim of this study was to predict fall status from spatial-temporal gait characteristics measured by a wearable device in a heterogeneous population of neurological patients.

View Article and Find Full Text PDF

Gait may be a useful biomarker that can be objectively measured with wearable technology to classify Parkinson's disease (PD). This study aims to: (i) comprehensively quantify a battery of commonly utilized gait digital characteristics (spatiotemporal and signal-based), and (ii) identify the best discriminative characteristics for the optimal classification of PD. Six partial least square discriminant analysis (PLS-DA) models were trained on subsets of 210 characteristics measured in 142 subjects (81 people with PD, 61 controls (CL)).

View Article and Find Full Text PDF

Wearable technology for the automatic detection of gait events has recently gained growing interest, enabling advanced analyses that were previously limited to specialist centres and equipment (e.g., instrumented walkway).

View Article and Find Full Text PDF

Early diagnosis of Parkinson's diseases (PD) is challenging; applying machine learning (ML) models to gait characteristics may support the classification process. Comparing performance of ML models used in various studies can be problematic due to different walking protocols and gait assessment systems. The objective of this study was to compare the impact of walking protocols and gait assessment systems on the performance of a support vector machine (SVM) and random forest (RF) for classification of PD.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disease; gait impairments are typical and are associated with increased fall risk and poor quality of life. Gait is potentially a useful biomarker to help discriminate PD at an early stage, however the optimal characteristics and combination are unclear. In this study, we used machine learning (ML) techniques to determine the optimal combination of gait characteristics to discriminate people with PD and healthy controls (HC).

View Article and Find Full Text PDF

Quantifying gait and postural control adds valuable information that aids in understanding neurological conditions where motor symptoms predominate and cause considerable functional impairment. Disease-specific clinical scales exist; however, they are often susceptible to subjectivity, and can lack sensitivity when identifying subtle gait and postural impairments in prodromal cohorts and longitudinally to document disease progression. Numerous devices are available to objectively quantify a range of measurement outcomes pertaining to gait and postural control; however, efforts are required to standardise and harmonise approaches that are specific to the neurological condition and clinical assessment.

View Article and Find Full Text PDF

Considering the challenge of population ageing and the substantial health problem among the elderly population from falls, the purpose of this study was to verify whether it is possible to distinguish accurately between older fallers and non-fallers, based on data from wearable inertial sensors collected during a specially designed test battery. A comprehensive but practical test battery using 5 wearable inertial sensors for multifactorial fall risk assessment was designed. This was followed by an experimental study on 196 community-dwelling Korean older women, categorized as fallers (N = 82) and non-fallers (N = 114) based on prior history of falls.

View Article and Find Full Text PDF