Background: Water, sanitation, hygiene (WSH), nutrition (N), and combined (N+WSH) interventions are often implemented by global health organizations, but WSH interventions may insufficiently reduce pathogen exposure, and nutrition interventions may be modified by environmental enteric dysfunction (EED), a condition of increased intestinal permeability and inflammation. This study investigated the heterogeneity of these treatments' effects based on individual pathogen and EED biomarker status with respect to child linear growth.
Methods: We applied cross-validated targeted maximum likelihood estimation and super learner ensemble machine learning to assess the conditional treatment effects in subgroups defined by biomarker and pathogen status.
Background: Water, sanitation, hygiene (WSH), nutrition (N), and combined (N+WSH) interventions are often implemented by global health organizations, but WSH interventions may insufficiently reduce pathogen exposure, and nutrition interventions may be modified by environmental enteric dysfunction (EED), a condition of increased intestinal permeability and inflammation. This study investigated the heterogeneity of these treatments' effects based on individual pathogen and EED biomarker status with respect to child linear growth.
Methods: We applied cross-validated targeted maximum likelihood estimation and super learner ensemble machine learning to assess the conditional treatment effects in subgroups defined by biomarker and pathogen status.
Exposure to enteric pathogens in the environment poses a serious risk for infection and disease. The accurate detection and quantification of enteric pathogens in environmental samples is critical for understanding pathogen transport and fate and developing risk assessment models. In this study, we successfully applied TaqMan real-time PCR assays to quantitatively detect five human-specific pathogens (Shigella/EIEC, Salmonella Typhi, Vibrio cholera, Norovirus, and Giardia) in samples from open drains, canals, floodwater, septic tanks, and anaerobic baffled reactors (ABR) collected in Mirpur, Dhaka, Bangladesh from April to October 2019.
View Article and Find Full Text PDFEnteric fever is a severe systemic infection caused by serovar Typhi (ST) and serovar Paratyphi A (SPA). Detection of ST and SPA in wastewater can be used as a surveillance strategy to determine burden of infection and identify priority areas for water, sanitation, and hygiene interventions and vaccination campaigns. However, sensitive and specific detection of ST and SPA in environmental samples has been challenging.
View Article and Find Full Text PDFBackground: We evaluated the impact of low-cost water, sanitation, handwashing (WSH) and child nutrition interventions on enteropathogen carriage in the WASH Benefits cluster-randomized controlled trial in rural Bangladesh.
Methods: We analyzed 1411 routine fecal samples from children 14±2 months old in the WSH (n = 369), nutrition counseling plus lipid-based nutrient supplement (n = 353), nutrition plus WSH (n = 360), and control (n = 329) arms for 34 enteropathogens using quantitative PCR. Outcomes included the number of co-occurring pathogens; cumulative quantity of four stunting-associated pathogens; and prevalence and quantity of individual pathogens.