On-line counting of the microparticle/bacteria in the liquid medium has great potential in the food safety and biomedical fields. A new low-cost microfluidic device is proposed for the on-line counting of the microparticles/bacteria in the liquid medium. The gradually contracted microchannel and the viscoelastic fluid are combined to achieve the efficient elastic focusing of the particle/bacteria, which significantly improves the counting accuracy by aligning all particles/bacteria in a single position at the center of the microchannel.
View Article and Find Full Text PDFThis paper presents a multi-axis low-cost soft magnetic tactile sensor with a high force range for force feedback in robotic surgical systems. The proposed sensor is designed to fully decouple the output response for normal, shear and angular forces. The proposed sensor is fabricated using rapid prototyping techniques and utilizes Neodymium magnets embedded in an elastomer over Hall sensors such that their displacement produces a voltage change that can be used to calculate the applied force.
View Article and Find Full Text PDFThis paper presents a systematic and efficient design approach for the two degree-of-freedom (2-DoF) capacitive microelectromechanical systems (MEMS) accelerometer by using combined design and analysis of computer experiments (DACE) and Gaussian process (GP) modelling. Multiple output responses of the MEMS accelerometer including natural frequency, proof mass displacement, pull-in voltage, capacitance change, and Brownian noise equivalent acceleration (BNEA) are optimized simultaneously with respect to the geometric design parameters, environmental conditions, and microfabrication process constraints. The sampling design space is created using DACE based Latin hypercube sampling (LHS) technique and corresponding output responses are obtained using multiphysics coupled field electro-thermal-structural interaction based finite element method (FEM) simulations.
View Article and Find Full Text PDFThis paper presents a new design of microelectromechanical systems (MEMS) based low-g accelerometer utilizing mode-localization effect in the three degree-of-freedom (3-DoF) weakly coupled MEMS resonators. Two sets of the 3-DoF mechanically coupled resonators are used on either side of the single proof mass and difference in the amplitude ratio of two resonator sets is considered as an output metric for the input acceleration measurement. The proof mass is electrostatically coupled to the perturbation resonators and for the sensitivity and input dynamic range tuning of MEMS accelerometer, electrostatic electrodes are used with each resonator in two sets of 3-DoF coupled resonators.
View Article and Find Full Text PDFMicromachines (Basel)
September 2020
This paper presents microfabrication process-driven design of a multi-degree of freedom (multi-DoF) non-resonant electrostatic microelectromechanical systems (MEMS) gyroscope by considering the design constraints of commercially available low-cost and widely-used silicon-on-insulator multi-user MEMS processes (SOIMUMPs), with silicon as a structural material. The proposed design consists of a 3-DoF drive mode oscillator with the concept of addition of a collider mass which transmits energy from the drive mass to the passive sense mass. In the sense direction, 2-DoF sense mode oscillator is used to achieve dynamically-amplified displacement in the sense mass.
View Article and Find Full Text PDFHigh force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here.
View Article and Find Full Text PDF