Publications by authors named "Rana Chakrabarti"

SMARCA4-deficient undifferentiated tumors (SMARCA4-UT) are a newly described entity and are typically seen in the thoracic cavity. However, these tumors have been described in other body sites, including the esophagus. These tumors are rare, aggressive neoplasms, characterized by the loss of protein product of SMARCA4 (Brahma-related gene-1) and the preservation of INI1 (SMARCB1) expression.

View Article and Find Full Text PDF

Conventional genetic testing of individuals with neurodevelopmental presentations and congenital anomalies (ND/CAs), i.e., the analysis of sequence and copy number variants, leaves a substantial proportion of them unexplained.

View Article and Find Full Text PDF

Coffin-Siris and Nicolaides-Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes.

View Article and Find Full Text PDF

Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p.

View Article and Find Full Text PDF

Purpose: Diabetic retinopathy entails proliferation of vascular endothelial cells (ECs) and unregulated angiogenesis. We have previously shown that ECs increase the expression of an embryonic variant of fibronectin (FN), called extra domain-B FN (ED-B FN) in response to high glucose. We also showed that ED-B FN regulates EC tube morphogenesis, possibly through vascular endothelial growth factor (VEGF).

View Article and Find Full Text PDF

Unlabelled: Aims/Introduction:  In diabetes, increased oxidative stress as a result of damage to the electron transport chain can lead to tissue injury through upregulation of multiple vasoactive factors and extracellular matrix proteins. Benfotiamine, a lipid soluble thiamine derivative, through reducing mitochondrial superoxide production, blocks multiple pathways leading to tissue damage in hyperglycemia. We investigated if treatment with benfotiamine can prevent diabetes-induced production of vasoactive factors and extracellular matrix proteins, and whether such effects are tissue-specific.

View Article and Find Full Text PDF

Diabetic retinopathy is one of the most common causes of blindness in North America. Several signaling mechanisms are activated secondary to hyperglycemia in diabetes, leading to activation of vasoactive factors. We investigated a novel pathway, namely extracellular signal regulated kinase 5 (ERK5) mediated signaling, in modulating glucose-induced vascular endothelial growth factor (VEGF) expression.

View Article and Find Full Text PDF

Sustained hyperglycemia in diabetes causes alteration of a large number of transcription factors and mRNA transcripts, leading to tissue damage. We investigated whether p300, a transcriptional coactivator with histone acetyl transferase activity, regulates glucose-induced activation of transcription factors and subsequent upregulation of vasoactive factors and extracellular matrix (ECM) proteins in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated in varied glucose concentrations and were studied after p300 small interfering RNA (siRNA) transfection, p300 overexpression, or incubation with the p300 inhibitor curcumin.

View Article and Find Full Text PDF