Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for spinal cord injury, but immunological rejection and possible tumor formation limit its application. The therapeutic effects of MSCs mainly depend on their release of soluble paracrine factors. Exosomes are essential for the secretion of these paracrine effectors.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2016
We report here the synthesis of three new nickel(II) complexes: [Ni(PzTA)2CO3]·5H2O (PzTA=2,4-diamino-6-(2'-pyrazin)-1,3,5-triazine) in 1, [NiQ(PyTA)(H2O)2]Cl·H2O (HQ=8-hydroxyquinoline, PyTA=2,4-diamino-6-(2'-pyridyl)-1,3,5-triazine) in 2, [NiQ(PzTA)(H2O)2]Cl·H2O in 3, and they were characterized by UV spectroscopy, elemental analysis, molar conductivity and X-ray single crystal diffraction. Binding of the complexes to ct-DNA was investigated with electronic spectroscopy, ethidium bromide displacement from DNA, viscometry and cyclic voltammetry. The results depicted the DNA binding mode of the three complexes was intercalation, and complex 1 together with external static-electricity.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
June 2014
Objective: To screen out differentially expressed microRNAs (miRNAs) in the plasma of children with methylmalonic acidemia (MMA), to determine the expression of miR-9-1 in plasma and to preliminarily evaluate the significance of miR-9-1 as a biomarker in MMA.
Methods: Plasma was obtained from 17 MMA children, 10 hyperhomocysteinemia (HHcy) children without MMA (HHcy group), and 10 normal controls. Of 17 MMA children, 12 had HHcy (MMA+HHcy group), and 5 had no HHcy (MMA group).
Spectrochim Acta A Mol Biomol Spectrosc
July 2014
We report here the synthesis of a new copper(II) complex of 2,4-diamino-6-(2'-pyrazin)-1,3,5-triazine [Cu(pzta)2Cl]Cl·H2O and its characterization using UV and IR spectroscopy, elemental analysis, and X-ray diffraction. Fluorescence spectroscopy revealed that the complex was sensitive to oxygen and to the polarity of nonaqueous solvents. Binding of the complex to DNA was investigated using UV spectroscopy, ethidium bromide displacement from DNA, cyclic voltammetry, and viscometry.
View Article and Find Full Text PDF