Publications by authors named "Ran Damari"

A planar Fabry-Perot cavity with intermirror spacing of ≪ λ is explored for its "zero-order mode" terahertz transmission. The enhanced transmission observed as → 0 indicates that such cavities satisfy the resonance conditions across a broad terahertz bandwidth. The experimental signatures from this elusive, "technically challenging" regime are evidenced using time-domain terahertz spectroscopy and are complemented by numerical calculations.

View Article and Find Full Text PDF

Light-induced orientation of gas phase molecules is a long-pursued goal in physics and chemistry. Here, we experimentally demonstrate a six-fold increase in the terahertz-induced orientation of iodomethane (CHI) molecules at room temperature, provided by rotational pre-excitation with a moderately intense near-IR pulse. The paper highlights the underlying interference of multiple coherent transition pathways within the rotational coherence manifold and is analyzed accordingly.

View Article and Find Full Text PDF

A new and efficient method for orientation echo spectroscopy is presented and realized experimentally. The excitation scheme utilizes concerted rotational excitations by both ultrashort terahertz and near-IR pulses and its all-optical detection is enabled by the molecular orientation-induced second harmonic method [J. Phys.

View Article and Find Full Text PDF

We demonstrate and explore an all-optical technique for direct monitoring of the orientation dynamics in gas-phase molecular ensembles. The technique termed "MOISH" utilizes the transiently lifted inversion symmetry of polar gas media and provides a sensitive and spatially localized probing of the second-harmonic generation signal that is directly correlated with the orientation of the gas. Our experimental results reveal selective electronic and nuclear dynamical contributions to the overall nonlinear optical signal and decipher them apart using the "reporter gas" approach.

View Article and Find Full Text PDF

Several years ago, strong coupling between electronic molecular transitions and photonic structures was shown to modify the electronic landscape of the molecules and affect their chemical behavior. Since then, this concept has evolved into a new field known as polaritonic chemistry. An important ingredient in the progress of this field was the demonstration of strong coupling with intra-molecular vibrations, which enabled the modification of processes occurring at the electronic ground-state.

View Article and Find Full Text PDF

In recent years dynamic nuclear polarization (DNP) has greatly expanded the range of materials systems that can be studied by solid state NMR spectroscopy. To date, the majority of systems studied by DNP were insulating materials including organic and inorganic solids. However, many technologically-relevant materials used in energy conversion and storage systems are electrically conductive to some extent or are employed as composites containing conductive additives.

View Article and Find Full Text PDF

We study the dynamics of rotational echoes in gas phase molecular ensembles and their dependence on the delay and intensity of the excitation pulses. We explore the unique dynamics of alignment echoes that arise from the multilevel nature of the molecular rotors and impose severe difficulties in utilizing echo responses for rotational spectroscopy. We show experimentally and theoretically that judicious control of both the delay and intensity of the second pulse enables multilevel "rotational echo spectroscopy.

View Article and Find Full Text PDF

We study and demonstrate the rephasing property of the echo response in a multilevel rotational system of iodomethane via long time-resolved optical birefringence measurements. The strong centrifugal distortion of iodomethane is utilized as a dephasing mechanism imprinted on the echo signal and is shown to rephase throughout its evolution. The dependence of the echo signal amplitude on the driving pulses' intensities is theoretically and experimentally explored.

View Article and Find Full Text PDF

The decay of field-free rotational dynamics is experimentally studied by two complementary methods: laser-induced molecular alignment and terahertz-field-induced molecular orientation. A comparison between the decay rates of different molecular species at various gas pressures reveals that oriented molecular ensembles decay faster than aligned ensembles. The discrepancy in decay rates is attributed to the coherent radiation emitted by the transiently oriented ensembles and is absent from aligned molecules.

View Article and Find Full Text PDF

We experimentally study the optical- and terahertz-induced rotational dynamics of asymmetric molecules in the gas phase. Terahertz and optical fields are identified as two distinct control handles over asymmetric molecules, as they couple to the rotational degrees of freedom via the molecular dipole and polarizability selectively. The distinction between those two rotational handles is highlighted by different types of quantum revivals observed in long-duration (>100  ps) field-free rotational evolution.

View Article and Find Full Text PDF