Publications by authors named "Ramzi Melhem"

Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr(105) phosphorylation in cultured adipocytes and in vivo.

View Article and Find Full Text PDF

The entirety of all protein coding sequences is reported to represent a small fraction (~2%) of the mouse and human genomes; the vast majority of the rest of the genome is presumed to be repetitive elements (REs). In this study, the C57BL/6J mouse reference genome was subjected to an unbiased RE mining to establish a whole-genome profile of RE occurrence and arrangement. The C57BL/6J mouse genome was fragmented into an initial set of 5,321 units of 0.

View Article and Find Full Text PDF

Background: Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and body mass, and has been implicated in endoplasmic reticulum (ER) stress. Herein, we assess the role of PTP1B in ER stress in brown adipocytes, which are key regulators of thermogenesis and metabolic response.

Methodology/principal Findings: To determine the role of PTP1B in ER stress, we utilized brown adipose tissue (BAT) from mice with adipose-specific PTP1B deletion, and brown adipocytes deficient in PTP1B and reconstituted with PTP1B wild type (WT) or the substrate-trapping PTP1B D181A (D/A) mutant.

View Article and Find Full Text PDF

Approximately 2% of the human genome is reported to be occupied by genes. Various forms of repetitive elements (REs), both characterized and uncharacterized, are presumed to make up the vast majority of the rest of the genomes of human and other species. In conjunction with a comprehensive annotation of genes, information regarding components of genome biology, such as gene polymorphisms, non-coding RNAs, and certain REs, is found in human genome databases.

View Article and Find Full Text PDF