Publications by authors named "Ramzi Kafoury"

The respiratory system represents the main gateway for nanoparticles' entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles' interactions with diverse biological system models.

View Article and Find Full Text PDF

Impact on health by nanomaterials has become a public concern with the great advances of nanomaterials for various applications. Surface coating agents are an integral part of nanoparticles, but not enough attention has been paid during toxicity tests of nanoparticles. As a result, there are inconsistent toxicity results for certain nanomaterials.

View Article and Find Full Text PDF

The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels.

View Article and Find Full Text PDF

To evaluate the possible impact that the BP Deepwater Horizon Gulf oil spill might have had on pollution levels in the State of Mississippi, the Mississippi Department of Environmental Quality (MDEQ), and the US Environmental Protection Agency (EPA) analyzed surface water and ambient air quality pollutant data taken from MDEQ and EPA monitoring sites on the Mississippi Gulf Coast. The data were compared with acute, chronic, and human health air and water quality standards to determine whether the pollutant levels occurring during the oil spill could cause ecological and/or human health effects. The water quality data indicated levels of nickel, vanadium, volatile organic compounds (VOCs), and semivolatile organic compounds analyzed remained below acute and chronic levels for both aquatic life and human health.

View Article and Find Full Text PDF

Ozone (O(3)) is a major component of smog and an inhaled toxicant to the lung. O(3) rapidly reacts with the airway epithelial cell membrane phospholipids to generate lipid ozonation products (LOP). 1-Hydroxy-1-hydroperoxynonane (HHP-C9) is an important LOP, produced from the ozonation of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine.

View Article and Find Full Text PDF

Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals.

View Article and Find Full Text PDF

Exposure to particulate matter (PM2.5-10), including diesel exhaust particles (DEP) has been reported to induce lung injury and exacerbation of asthma and chronic obstructive pulmonary disease. Alveolar macrophages play a major role in the lung's response to inhaled particles and therefore, are a primary target for PM2.

View Article and Find Full Text PDF

The sequence of events leading to ozone-induced airway inflammation is not well known. To elucidate the molecular and cellular events underlying ozone toxicity in the lung, we hypothesized that lipid ozonation products (LOPs) generated by the reaction of ozone with unsaturated fatty acids in the epithelial lining fluid and cell membranes play a key role in mediating ozone-induced airway inflammation. To test our hypothesis, we ozonized 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and generated LOPs.

View Article and Find Full Text PDF