Publications by authors named "Ramya T"

, a common cause of morbidity in cystic fibrosis, chronically infects the patient's lungs by forming an alginate-containing biofilm. Alginate lyases are polysaccharide lyases that lyse alginate and are, therefore, potential biofilm-disruptive agents. However, cystic fibrosis sputum contains high levels of metals such as iron and zinc.

View Article and Find Full Text PDF

Several bacterial flagellins are O-glycosylated with nonulosonic acids on surface-exposed Serine/Threonine residues by Maf glycosyltransferases. The Clostridium botulinum Maf glycosyltransferase (CbMaf) displays considerable donor substrate promiscuity, enabling flagellin O-glycosylation with N-acetyl neuraminic acid (Neu5Ac) and 3-deoxy-D-manno-octulosonic acid in the absence of the native nonulosonic acid, a legionaminic acid derivative. Here, we have explored the sequence/structure attributes of the acceptor substrate, flagellin, required by CbMaf glycosyltransferase for glycosylation with Neu5Ac and KDO, by co-expressing C.

View Article and Find Full Text PDF

Sialidases catalyze the removal of terminal sialic acids from sialylated biomolecules, and their substrate preference is frequently indicated in terms of the glycosidic linkages cleaved (α2-3, α2-6, and α2-8) without mention of the remaining sub-terminal reducing-end saccharide moieties. Many human gut commensal and pathogenic bacteria secrete sialidases to forage for sialic acids, which are then utilized as an energy source or assimilated into membrane/capsular structural components. Infant gut commensals similarly utilize sialylated human milk oligosaccharides containing different glycosidic linkages.

View Article and Find Full Text PDF

Background: Digital health literacy (DHL) is the confluence where health literacy meets digital literacy. DHL has been labelled as one of the digital determinants of health by the World Health Organization. The present study estimated and compared the DHL between Telangana's urban and rural ageing adults, and their potential determinants.

View Article and Find Full Text PDF

This study investigates the enhancement of hydrogen gas-sensing performance by introducing silver (Ag) nanoparticles onto tungsten trioxide (WO) thin films. Herein, the WO thin films are deposited onto SiO/Si substrates using a sputtering technique and Ag nanoparticles are loaded onto the WO surface through a spin coating technique. To evaluate the sensing performance of a hydrogen gas, interdigitated titanium (Ti) electrodes are deposited onto the Ag:WO layer.

View Article and Find Full Text PDF

Uncultured microbes represent a huge untapped biological resource of novel genes and gene products. Although recent genomic and metagenomic sequencing efforts have led to the identification of numerous genes that are homologous to existing annotated genes, there remains, yet, an enormous pool of unannotated genes that do not find significant sequence homology to existing annotated genes. Functional metagenomics offers a way to identify and annotate novel gene products.

View Article and Find Full Text PDF

Chronic mucoid infections are a major scourge in cystic fibrosis patients. Mucoid displays structured alginate-rich biofilms that are resistant to antibiotics. Here, we have assessed the efficacy of a panel of alginate lyases in combating mucoid biofilms in cystic fibrosis.

View Article and Find Full Text PDF

Alginate lyases are potential agents for disrupting alginate-rich Pseudomonas biofilms in the infected lungs of cystic fibrosis patients but there is as yet no clinically approved alginate lyase that can be used as a therapeutic. We report here the endolytic alginate lyase activity of a recombinant Cellulophaga algicola alginate lyase domain (CaAly) encoded by a gene that also codes for an N-terminal carbohydrate-binding module, CBM6, and a central F-type lectin domain (CaFLD). CaAly degraded both polyM and polyG alginates with optimal temperature and pH of 37°C and pH 7, respectively, with greater preference for polyG.

View Article and Find Full Text PDF

Some bacterial flagellins are O-glycosylated on surface-exposed serine/threonine residues with nonulosonic acids such as pseudaminic acid, legionaminic acid and their derivatives by flagellin nonulosonic acid glycosyltransferases, also called motility-associated factors (Maf). We report here two new glycosidic linkages previously unknown in any organism, serine/threonine-O-linked N-acetylneuraminic acid (Ser/Thr-O-Neu5Ac) and serine/threonine-O-linked 3-deoxy-D-manno-octulosonic acid or keto-deoxyoctulosonate (Ser/Thr-O-KDO), both catalyzed by Geobacillus kaustophilus Maf and Clostridium botulinum Maf. We identified these novel glycosidic linkages in recombinant G.

View Article and Find Full Text PDF

F-type lectins are typically L-fucose binding proteins with characteristic L-fucose-binding and calcium-binding sequence motifs, and an F-type lectin fold. An exception is Ranaspumin-4, an F-type lectin of the Tungra frog, Engystomops pustulosus. Ranaspumin-4 is D-galactose specific and does not bind to L-fucose although it has the conserved L-fucose binding sequence motif and shares overall sequence similarity with other F-type lectins.

View Article and Find Full Text PDF

Various factors including diet, age, geography, culture and socio-economic status have a role in determining the composition of the human gut microbiota. The human gut microbial composition is known to be altered in disease conditions. Considering the important role of the gut microbiome in maintaining homeostasis and overall health, it is important to understand the microbial diversity and the functional metagenome of the healthy gut.

View Article and Find Full Text PDF

Background: Recent literature supports the removal of myomas during cesarean section, which traditionally was considered a relative contraindication, given a higher complication rate. This study is to share our experience of cesarean myomectomy in the last decade.

Methods: This study is a retrospective review of our prospectively maintained database, from January 2008 to December 2017, at a tertiary care level teaching institution.

View Article and Find Full Text PDF

F-type lectins are phylogenetically widespread albeit selectively distributed lectins with an L-fucose-binding sequence motif and an F-type lectin fold. Several F-type lectins from fishes have been extensively studied, and structural information is available for F-type lectin domains from fish and bacterial proteins. F-type lectins have been demonstrated to be involved in self-/nonself-recognition and therefore have an important role in pathogen defense in many metazoan animals.

View Article and Find Full Text PDF

The typical F-type lectin domain (FLD) has an L-fucose-binding motif [HX(26)RXDX(4)R/K] with conserved basic residues that mediate hydrogen bonding with alpha-L-fucose. About one-third of the nonredundant FLD sequences in the publicly available databases are "atypical"; they have motifs with substitutions of these critical residues and/or variations in motif length. We addressed the question if atypical FLDs with substitutions of the critical residues retain lectin activity by performing site-directed mutagenesis and assessing the glycan-binding functions of typical and atypical FLDs.

View Article and Find Full Text PDF

Individual lectin-carbohydrate interactions are usually of low affinity. However, high avidity is frequently attained by the multivalent presentation of glycans on biological surfaces coupled with the occurrence of high order lectin oligomers or tandem repeats of lectin domains in the polypeptide. F-type lectins are l-fucose binding lectins with a typical sequence motif, HX(26)RXDX(4)R/K, whose residues participate in l-fucose binding.

View Article and Find Full Text PDF

F-type lectins are phylogenetically widespread but selectively distributed fucose-binding lectins with L-fucose- and calcium-binding sequence motifs and an F-type lectin fold. Bacterial F-type lectin domains frequently occur in tandem with various protein domains in diverse architectures, indicating a possible role in directing enzyme activities or other biological functions to distinct fucosylated niches. Here, we report the biochemical characterization of a Streptosporangium roseum protein containing an F-type lectin domain in tandem with an NPCBM-associated domain and a family GH 29A alpha-l-fucosidase domain.

View Article and Find Full Text PDF

Protein-based drug delivery systems have an edge over conventional drug delivery systems due to their biodegradability, non-antigenicity, and excellent biocompatibility to improve the therapeutic properties of anticancer drugs. This study describes the increased anticancer efficacy of 5-fluorouracil (5-FU) conjugated with silkworm Bombyx mori pupal biowaste derived nanoparticles. Here, we have checked the toxicity of pupa-protein nanoparticles (PpNps) and their potential as a carrier for anticancer drugs.

View Article and Find Full Text PDF

This communication probes ligand binding by human Intelectin-1 with several saccharides. Human Intelectin-1 was previously reported to bind to microbial glycans via ribofuranoside or galactofuranoside residues, whereas subsequently, a crystal structure of ligand bound hITLN1 indicated that hITLN1 does not bind to ribofuranoside but distinguishes between microbial and human glycans through a glycan motif - a terminal, acyclic 1,2-diol, which is present on galactofuranose and other microbial saccharides. Here, we demonstrate that besides glycerol and glycerol derivatives (which have an acyclic 1,2-diol), and 2-deoxy-d-galactose, d-ribose and 2-deoxy-d-ribose, which have been previously reported as human Intelectin-1 ligands, 2-C-hydroxymethyl-d-ribose, d-talose, d-idose, d-altrose and sorbitol also elute human Intelectin-1 from Sepharose CL-6B.

View Article and Find Full Text PDF

F-type lectins are fucose binding lectins with characteristic fucose binding and calcium binding motifs. Although they occur with a selective distribution in viruses, prokaryotes and eukaryotes, most biochemical studies have focused on vertebrate F-type lectins. Recently, using sensitive bioinformatics search techniques on the non-redundant database, we had identified many microbial F-type lectin domains with diverse domain organizations.

View Article and Find Full Text PDF

Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins.

View Article and Find Full Text PDF

The experimental and theoretical spectra of (S)-2-Oxopyrrolidin-1-yl Butanamide (S2OPB) were studied. FT-IR and FT-Raman spectra of S2OPB in the solid phase were recorded and analyzed in the range 4000-450 and 5000-50 cm(-1) respectively. The structural and spectroscopic analyses of S2OPB were calculated using ab initio Hartree Fock (HF) and density functional theory calculations (B3PW91, B3LYP) with 6-31G(d,p) basis set.

View Article and Find Full Text PDF

F-type lectins are fucolectins with characteristic fucose and calcium-binding sequence motifs and a unique lectin fold (the "F-type" fold). F-type lectins are phylogenetically widespread with selective distribution. Several eukaryotic F-type lectins have been biochemically and structurally characterized, and the F-type lectin domain (FLD) has also been studied in the bacterial proteins, Streptococcus mitis lectinolysin and Streptococcus pneumoniae SP2159.

View Article and Find Full Text PDF