Publications by authors named "Ramya Parameswaran"

Introduction: Emergency departments (ED) provide trauma-informed care to sexual assault (SA) survivors and connect them with comprehensive services. Through surveying SA survivor advocates, we aimed to 1) document updated trends in the quality of care and resources offered to SA survivors and 2) identify potential disparities according to geographic regions in the US, urban vs rural clinic locations, and the availability of sexual assault nurse examiners (SANE).

Methods: We conducted a cross-sectional study between June-August 2021, surveying SA advocates who were dispatched from rape crisis centers to support survivors during ED care.

View Article and Find Full Text PDF

Emergency departments (EDs) providing care and forensic examinations for sexual assault (SA) survivors are often supported by SA patient advocates. This study explored advocates' perspectives regarding problems and potential solutions in SA patient care through a focus group with 12 advocates. Thematic analysis identified two major themes: provider-patient interactions and ED-hospital systems.

View Article and Find Full Text PDF

Interactions between emergency department (ED) staff and sexual assault (SA) survivors can be a source of retraumatization for survivors, increasing their risk of posttraumatic stress and decreasing utilization of longitudinal medical care. Little is known about nationwide trends in ED staff attitudes and behaviors toward survivors, including the impact of survivor identity. We conducted a survey to determine if survivor identity influenced ED staff behaviors.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) plays diverse biological roles, and its effects in part depend on its spatiotemporal presence, in both intra- and extracellular contexts. A full understanding of the physiological effects of HO in both healthy and disease states is hampered by a lack of tools to controllably produce HO. Here, we address this issue by showing visible-light-induced production of exogenous HO by free-standing, gold-decorated silicon nanowires internalized in human umbilical vein endothelial cells.

View Article and Find Full Text PDF

Emergency department (ED) providers serve as the primary point-of-contact for many survivors of sexual assault but are often ill-prepared to address their unique treatment needs. Sexual assault nurse examiners (SANEs) are therefore an important resource for training other ED providers. The objective of this project was to create a SANE-led educational intervention addressing this training gap.

View Article and Find Full Text PDF

Optically controlled nongenetic neuromodulation represents a promising approach for the fundamental study of neural circuits and the clinical treatment of neurological disorders. Among the existing material candidates that can transduce light energy into biologically relevant cues, silicon (Si) is particularly advantageous due to its highly tunable electrical and optical properties, ease of fabrication into multiple forms, ability to absorb a broad spectrum of light, and biocompatibility. This protocol describes a rational design principle for Si-based structures, general procedures for material synthesis and device fabrication, a universal method for evaluating material photoresponses, detailed illustrations of all instrumentation used, and demonstrations of optically controlled nongenetic modulation of cellular calcium dynamics, neuronal excitability, neurotransmitter release from mouse brain slices, and brain activity in the mouse brain in vivo using the aforementioned Si materials.

View Article and Find Full Text PDF

Silicon-based materials have been widely used. However, remotely controlled and interconnect-free silicon configurations have been rarely explored, because of limited fundamental understanding of the complex physicochemical processes that occur at interfaces between silicon and biological materials. Here, we describe rational design principles, guided by biology, for establishing intracellular, intercellular and extracellular silicon-based interfaces, where the silicon and the biological targets have matched properties.

View Article and Find Full Text PDF

Electronic pacemakers can treat electrical conduction disorders in hearts; however, they are invasive, bulky, and linked to increased incidence of infection at the tissue-device interface. Thus, researchers have looked to other more biocompatible methods for cardiac pacing or resynchronization, such as femtosecond infrared light pulsing, optogenetics, and polymer-based cardiac patches integrated with metal electrodes. Here we develop a biocompatible nongenetic approach for the optical modulation of cardiac cells and tissues.

View Article and Find Full Text PDF

One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones.

View Article and Find Full Text PDF

Optical methods for modulating cellular behaviour are promising for both fundamental and clinical applications. However, most available methods are either mechanically invasive, require genetic manipulation of target cells or cannot provide subcellular specificity. Here, we address all these issues by showing optical neuromodulation with free-standing coaxial p-type/intrinsic/n-type silicon nanowires.

View Article and Find Full Text PDF

Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone.

View Article and Find Full Text PDF

The ability to seamlessly merge electronic devices with biological systems at the cellular length scale is an exciting prospect for exploring new fundamental cell biology and in designing next-generation therapeutic devices. Semiconductor nanowires are well suited for achieving this goal because of their intrinsic size and wide range of possible configurations. However, current studies have focused primarily on delivering substrate-bound nanowire devices through mechanical abrasion or electroporation, with these bulkier substrates negating many of the inherent benefits of using nanoscale materials.

View Article and Find Full Text PDF

MYC-induced T-ALL exhibit oncogene addiction. Addiction to MYC is a consequence of both cell-autonomous mechanisms, such as proliferative arrest, cellular senescence, and apoptosis, as well as non-cell autonomous mechanisms, such as shutdown of angiogenesis, and recruitment of immune effectors. Here, we show, using transgenic mouse models of MYC-induced T-ALL, that the loss of either p19ARF or p53 abrogates the ability of MYC inactivation to induce sustained tumor regression.

View Article and Find Full Text PDF

Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors.

View Article and Find Full Text PDF

CD45 is a receptor-like tyrosine phosphatase that positively regulates BCR signaling by dephosphorylating the inhibitory tyrosine of the Src family kinases. We showed previously that a single point mutation, E613R, introduced into the cytoplasmic membrane-proximal "wedge" domain of CD45 is sufficient to drive a lupus-like autoimmune disease on a susceptible genetic background. To clarify the molecular mechanism of this disease, we took advantage of a unique allelic series of mice in which the expression of CD45 is varied across a broad range.

View Article and Find Full Text PDF

The Src and Syk families of kinases are two distinct sets of kinases that play critical roles in initiating membrane-proximal B cell receptor (BCR) signaling. However, unlike in other lymphocytes, such as T cells, the "division of labor" between Src family kinases (SFKs) and Syk in B cells is not well separated because both Syk and SFKs can phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs) present in proteins comprising the BCR. To understand why B cells require both SFKs and Syk for activation, we investigated the roles of both families of kinases in BCR signaling with computational modeling and in vitro experiments.

View Article and Find Full Text PDF

In humans, up to 75% of newly generated B cells and about 30% of mature B cells show some degree of autoreactivity. Yet, how B cells establish and maintain tolerance in the face of autoantigen exposure during and after development is not certain. Studies of model B-cell antigen receptor (BCR) transgenic systems have highlighted the critical role of functional unresponsiveness or ‘anergy’.

View Article and Find Full Text PDF

The receptor-like tyrosine phosphatase CD45 positively regulates antigen receptor signaling by dephosphorylating the inhibitory tyrosine of the src family kinases. CD45-deficient mice fail to fully unmask the role of CD45 in B cells because of the expression of a partially redundant tyrosine phosphatase, CD148. However, mice that are doubly deficient in CD45 and CD148 exhibit a very early block in B-cell development, thereby obscuring later roles for CD45.

View Article and Find Full Text PDF