Publications by authors named "Ramya An"

Simultaneous detection of multiple biomarkers is always an obstacle in immunohistochemical (IHC) analysis. Herein, a straightforward spectroscopy-driven histopathologic approach has emerged as a paradigm of Raman-label (RL) nanoparticle probes for multiplex recognition of pertinent biomarkers in heterogeneous breast cancer. The nanoprobes are constructed by sequential incorporation of signature RL and target specific antibodies on gold nanoparticles, which are coined as Raman-Label surface enhanced Raman scattering (RL-SERS)-nanotags to evaluate simultaneous recognition of clinically relevant breast cancer biomarkers i.

View Article and Find Full Text PDF

Ultrasensitive detection of cancer biomarkers via single-cell analysis through Raman imaging is an impending approach that modulates the possibility of early diagnosis. Cervical cancer is one such type that can be monitored for a sufficiently long period toward invasive cancer phenotype. Herein, we report a surface-enhanced Raman scattering (SERS) nanotag (SERS-tag) for the simultaneous detection of p16/K-i67, a dual biomarker persisting in the progression of squamous cell carcinoma of human cervix.

View Article and Find Full Text PDF

In accordance with the recent studies, Raman spectroscopy is well experimented as a highly sensitive analytical and imaging technique in biomedical research, mainly for various disease diagnosis including cancer. In comparison with other imaging modalities, Raman spectroscopy facilitate numerous assistances owing to its low background signal, immense spatial resolution, high chemical specificity, multiplexing capability, excellent photo stability and non-invasive detection capability. In cancer diagnosis Raman imaging intervened as a promising investigative tool to provide molecular level information to differentiate the cancerous vs non-cancerous cells, tissues and even in body fluids.

View Article and Find Full Text PDF

The downsides of conventional cancer monotherapies are profound and enormously consequential, as drug-resistant cancer cells and cancer stem cells (CSC) are typically not eliminated. Here, a targeted theranostic nano vehicle (TTNV) is designed using manganese-doped mesoporous silica nanoparticle with an ideal surface area and pore volume for co-loading an optimized ratio of antineoplastic doxorubicin and a drug efflux inhibitor tariquidar. This strategically framed TTNV is chemically conjugated with folic acid and hyaluronic acid as a dual-targeting entity to promote folate receptor (FR) mediated cancer cells and CD44 mediated CSC uptake, respectively.

View Article and Find Full Text PDF

Excellent multiplexing capability, molecular specificity, high sensitivity and the potential of resolving complex molecular level biological compositions augmented the diagnostic modality of surface-enhanced Raman scattering (SERS) in biology and medicine. While maintaining all the merits of classical Raman spectroscopy, SERS provides a more sensitive and selective detection and quantification platform. Non-invasive, chemically specific and spatially resolved analysis facilitates the exploration of SERS-based nano probes in diagnostic and theranostic applications with improved clinical outcomes compared to the currently available so called state-of-art technologies.

View Article and Find Full Text PDF

The development of new Raman reporters has attracted immense attention in diagnostic research based on surface enhanced Raman scattering (SERS) techniques, which is a well established method for ultrasensitive detection through molecular fingerprinting and imaging. Herein, for the first time, we report the unique and efficient Raman active features of the selected aza-BODIPY dyes 1-6. These distinctive attributes could be extended at the molecular level to allow detection through SERS upon adsorption onto nano-roughened gold surface.

View Article and Find Full Text PDF

Strategically fabricated theranostic nanocarrier delivery system is an unmet need in personalized medicine. Herein, this study reports a versatile folate receptor (FR) targeted nanoenvelope delivery system (TNEDS) fabricated with gold core silica shell followed by chitosan-folic acid conjugate surface functionalization by for precise loading of doxorubicin (Dox), resembled as Au@SiO -Dox-CS-FA. TNEDS possesses up to 90% Dox loading efficiency and internalized through endocytosis pathway leading to pH and redox-sensitive release kinetics.

View Article and Find Full Text PDF

We have designed and synthesized novel tetraphenylethylene (TPE) appended organic fluorogens and unfold their unique Raman fingerprinting reflected by surface-enhanced Raman scattering (SERS) upon adsorption on nanoroughened gold surface as a new insight in addition to their prevalent aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) phenomena. A series of five TPE analogues has been synthesized consisting of different electron donors such as (1) indoline with propyl (TPE-In), (2) indoline with lipoic acid (TPE-In-L), (3) indoline with Boc-protected propyl amine (TPE-In-Boc), (4) benzothaizole (TPE-B), and (5) quinaldine (TPE-Q). Interestingly, all five TPE analogues produced multiplexing Raman signal pattern, out of which TPE-In-Boc showed a significant increase in signal intensity in the fingerprint region.

View Article and Find Full Text PDF

Aim: To study the cost-effectiveness of clinical screen with ultrasonography (USG) of hip for diagnosing developmental dysplasia of the hip (DDH) in newborns.

Methods: Retrospective study (2006-14). Term newborns had (i) target scan at 6 weeks-family history of DDH or breech presentation-and (ii) early scan-abnormal clinical screen.

View Article and Find Full Text PDF

Aim: Development of highly sensitive diagnostic nanoprobe for cancer imaging based on surface-enhanced Raman scattering (SERS) platform.

Materials & Methods: Synthesis of novel squaraine dyes as a Raman signature molecule denoted as lipoic-squaraine-lipoic (LSL), propyl-squaraine-lipoic (PSL) and propyl-squaraine-propyl (PSP). The SERS-nanotag constructed with a Raman signature molecule which is attached on gold nanoparticle and further encapsulated with heterofunctionalized PEG.

View Article and Find Full Text PDF