This study explored visual-vestibular sensory integration when the vestibular system receives self-motion information using caloric irrigation. The objectives of this study were to (1) determine if measurable vestibular circular vection can be induced in healthy participants using caloric vestibular stimulation and (2) determine if a conflicting visual display could impact vestibular vection. In Experiment 1 (E1), participants had their eyes closed.
View Article and Find Full Text PDFShape constancy is the ability to perceive that a shape remains the same when seen in different orientations. It has usually been measured by asking subjects to match a shape in the frontal plane with an inclined shape. But this method is subject to ambiguity.
View Article and Find Full Text PDFSuccessful adaptation to the microgravity environment of space and readaptation to gravity on earth requires recalibration of visual and vestibular signals. Recently, we have shown that adding simulated viewpoint oscillation to visual self-motion displays produces more compelling vection (despite the expected increase in visual-vestibular conflict experienced by stationary observers). Currently, it is unclear what role adaptation to gravity might play in this oscillation-based vection advantage.
View Article and Find Full Text PDF