Adaptive information-sampling approaches enable efficient selection of mobile robots' waypoints through which the accurate sensing and mapping of a physical process, such as the radiation or field intensity, can be obtained. A key parameter in the informative sampling objective function could be optimized balance the need to explore new information where the uncertainty is very high and to exploit the data sampled so far, with which a great deal of the underlying spatial fields can be obtained, such as the source locations or modalities of the physical process. However, works in the literature have either assumed the robot's energy is unconstrained or used a homogeneous availability of energy capacity among different robots.
View Article and Find Full Text PDFMultirobot rendezvous control and coordination strategies have garnered significant interest in recent years because of their potential applications in decentralized tasks. In this paper, we introduce a coordinate-free rendezvous control strategy to enable multiple robots to gather at different locations (dynamic leader robots) by tracking their hierarchy in a connected interaction graph. A key novelty in this strategy is the gathering of robots in different groups rather than at a single consensus point, motivated by autonomous multipoint recharging and flocking control problems.
View Article and Find Full Text PDFThe reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure.
View Article and Find Full Text PDF