Water is a key element for wood performance, as water molecules interact with the wood structure and affect important material characteristics such as mechanical properties and durability. Understanding wood-water interactions is consequently essential for all applications of wood, including the design of wood materials with improved durability by chemical modification. In this work, we used Raman micro-spectroscopy in combination with a specially designed moisture chamber to map molecular groups in wood cell walls under controlled moisture conditions in the hygroscopic range.
View Article and Find Full Text PDFCharacterization and tuning of the porosity of amorphous starch materials are important for many applications, including controlled release of encapsulated proteins. The porosities of these materials in dry and hydrated states can have different physicochemical origins and properties. Here, porosities of dry cross-linked starch microspheres and their hydration-induced transformations were characterized by small angle X-ray scattering, scanning electron and optical microscopies, thermogravimetric analysis, sorption calorimetry, nitrogen sorption, and helium-pycnometry.
View Article and Find Full Text PDFLignocellulose breakdown in biorefineries is facilitated by enzymes and physical forces. Enzymes degrade and solubilize accessible lignocellulosic polymers, primarily on fiber surfaces, and make fibers physically weaker. Meanwhile physical forces acting during mechanical agitation induce tearing and cause rupture and attrition of the fibers, leading to liquefaction, that is, a less viscous hydrolysate that can be further processed in industrial settings.
View Article and Find Full Text PDFWood is a porous, hygroscopic material with engineering properties that depend significantly on the amount of water (moisture) in the material. Water in wood can be present in both cell walls and the porous void-structure of the material, but it is only water in cell walls that affects the engineering properties. An important characteristic of wood is therefore the capacity for water of its solid cell walls, i.
View Article and Find Full Text PDFEnzymes and mechanics play major roles in lignocellulosic biomass deconstruction in biorefineries by catalyzing chemical cleavage or inducing physical breakdown of biomass, respectively. At industrially relevant substrate concentrations mechanical agitation is also a driving force for mass transfer as well as agglomeration of elongated biomass particles. Contrary to the physically induced particle attrition, which typically facilitates feedstock handling, particle agglomeration tends to hinder mass transfer and in the worst case induces processing difficulties like pipe blockage.
View Article and Find Full Text PDF