Introduction: While using force-plate derived measures of vertical jump performance, reflective of stretch-shortening-cycle (SSC) efficiency is common practice in sport science, there is limited evidence as to which tests and measures may be most sensitive toward neuromuscular fatigue. The aim of this study was to explore the SSC fatigue response to a one-week high-intensity fatiguing phase of training in National Collegiate Athletic Association (NCAA) Division-I basketball players.
Methods: The study timeline consisted of three weeks of baseline measures, one week of high-intensity training, and two weeks of follow-up testing.
While various quantifiable physical attributes have been found to contribute to athletes' performance, there is a lack of scientific literature focused on examining how they relate to success during competition performance. The aim of this study was to investigate different countermovement jump (CMJ)-derived force-time characteristics and their utility in distinguishing high from low performers within a measure of on-court contribution (i.e.
View Article and Find Full Text PDFBasketball is a sport that is characterized by various physical performance parameters and motor abilities such as speed, strength, and endurance, which are all underpinned by an athlete's efficient use of the stretch-shortening cycle (SSC). A common assessment to measure SSC efficiency is the countermovement jump (CMJ). When performed on a force plate, a plethora of different force-time metrics may be gleaned from the jump task, reflecting neuromuscular performance characteristics.
View Article and Find Full Text PDFThe purpose of this study was to determine the effects of deadlift chain variable resistance on surface electromyography (EMG) of the gluteus maximus, erector spinae, and vastus lateralis muscles, ground reaction forces (GRFs), and rate of force development (RFD). Thirteen resistance-trained men (24.0 ± 2.
View Article and Find Full Text PDF