Publications by authors named "Ramses M Ramirez"

Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists.

View Article and Find Full Text PDF

To find potentially habitable exoplanets, space missions employ the habitable zone (HZ), which is the region around a star (or multiple stars) where standing bodies of water could exist on the surface of a rocky planet. Follow-up atmospheric characterization could yield biosignatures signifying life. Although most iterations of the HZ are agnostic regarding the nature of such life, a recent study argues that a complex life HZ would be considerably smaller than that used in classical definitions.

View Article and Find Full Text PDF

The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated.

View Article and Find Full Text PDF

Recent one-dimensional (globally averaged) climate model calculations by Goldblatt et al. (2013) suggest that increased atmospheric CO(2) could conceivably trigger a runaway greenhouse on present Earth if CO(2) concentrations were approximately 100 times higher than they are today. The new prediction runs contrary to previous calculations by Kasting and Ackerman (1986), which indicated that CO(2) increases could not trigger a runaway, even at Venus-like CO(2) concentrations.

View Article and Find Full Text PDF

The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7ul8p7700iputv3s4p14sh456299rb44): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once