Publications by authors named "Rams J"

This review explores the advancements in additive manufacturing (AM) of biodegradable iron (Fe) and zinc (Zn) alloys, focusing on their potential for medical implants, particularly in vascular and bone applications. Fe alloys are noted for their superior mechanical properties and biocompatibility but exhibit a slow corrosion rate, limiting their biodegradability. Strategies such as alloying with manganese (Mn) and optimizing microstructure via laser powder bed fusion (LPBF) have been employed to increase Fe's corrosion rate and mechanical performance.

View Article and Find Full Text PDF

The variability arising from the LPBF process, the multitude of manufacturing parameters available, and the intrinsic anisotropy of the process, which causes different mechanical properties in distinct building directions, result in a wide range of variables that must be considered when designing industrial parts. To understand the effect of these variables on the LPBF manufacturing process, the performance of the AlSi10Mg alloy produced through this technique has been tested through several mechanical tests, including hardness, tensile, shear, and fracture toughness. The results have been correlated with the microstructure, together with manufacturing parameters, building directions, border scanning strategy, and layer height.

View Article and Find Full Text PDF

Iron and its alloys are attractive as biodegradable materials because of their low toxicity and suitable mechanical properties; however, they generally have a slow degradation rate. Given that corrosion is an electrochemical phenomenon where an exchange of electrons takes place, the application of magnetic fields from outside the body may accelerate the degradation of a ferrous temporary implant. In the present study, we have investigated the effect of alternating and direct low magnetic field (H = 6.

View Article and Find Full Text PDF

Biocomposite films based on PLA reinforced with different β-TCP contents (10%, 20%, and 25%wt.) were fabricated via solvent casting and immersed in SBF for 7, 14, and 21 days. The bioactivity, morphological, and thermal behavior of composites with immersion were studied using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, weight loss (W), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and gel permeation chromatography (GPC).

View Article and Find Full Text PDF

The microstructure and wear properties of a Mg-1wt.% Zn-1wt.% Ca (ZX11) alloy with different heat treatments have been investigated.

View Article and Find Full Text PDF

Improvements in Tissue Engineering and Regenerative Medicine (TERM)-type technologies have allowed the development of specific materials that, together with a better understanding of bone tissue structure, have provided new pathways to obtain biomaterials for bone tissue regeneration. In this manuscript, bioabsorbable materials are presented as emerging materials in tissue engineering therapies related to bone lesions because of their ability to degrade in physiological environments while the regeneration process is completed. This comprehensive review aims to explore the studies, published since its inception (2010s) to the present, on bioabsorbable composite materials based on PLA and PCL polymeric matrix reinforced with Mg, which is also bioabsorbable and has recognized osteoinductive capacity.

View Article and Find Full Text PDF

In the present day, the increment in life expectancy has led to the necessity of developing new biomaterials for the restoration or substitution of damaged organs that have lost their functionalities. Among all the research about biomaterials, this review paper aimed to expose the main possibilities that the sol-gel synthesis method can provide for the fabrication of materials with interest in the biomedical field, more specifically, when this synthesis method is used to improve the biological properties of different magnesium alloys used as biomaterials. The sol-gel method has been widely studied and used to generate ceramic materials for a wide range of purposes during the last fifty years.

View Article and Find Full Text PDF

Aluminum matrix composites reinforced with carbon fiber have been manufactured for the first time by infiltrating an A413 aluminum alloy in carbon fiber woven using high-pressure die casting (HPDC). Composites were manufactured with unidirectional carbon fibers and with 2 × 2 twill carbon wovens. The HPDC allowed full wetting of the carbon fibers and the infiltration of the aluminum alloy in the fibers meshes using aluminum at 680 °C.

View Article and Find Full Text PDF

In additive manufacturing (AM), the technology and processing parameters are key elements that determine the characteristics of samples for a given material. To distinguish the effects of these variables, we used the same AISI 316L stainless steel powder with different AM techniques. The techniques used are the most relevant ones in the AM of metals, i.

View Article and Find Full Text PDF

Magnesium AZ31 alloy substrates were coated with different coatings, including sol-gel silica-reinforced with graphene nanoplatelets, sol-gel silica, plasma electrolytic oxidation (PEO), and combinations of them, to improve cytocompatibility and control the corrosion rate. Electrochemical corrosion tests, as well as hydrogen evolution tests, were carried out using Hanks' solution as the electrolyte to assess the anticorrosion behavior of the different coating systems in a simulated body fluid. Preliminary cytocompatibility assessment of the different coating systems was carried out by measuring the metabolic activity, deoxyribonucleic acid quantification, and the cell growth of premyoblastic C2C12-GFP cell cultures on the surface of the different coating systems.

View Article and Find Full Text PDF

To modulate the properties of degradable implants from outside of the human body represents a major challenge in the field of biomaterials. Polylactic acid is one of the most used polymers in biomedical applications, but it tends to lose its mechanical properties too quickly during degradation. In the present study, a way to reinforce poly-L lactic acid (PLLA) with magnetic nanoparticles (MNPs) that have the capacity to heat under radiofrequency electromagnetic fields (EMF) is proposed.

View Article and Find Full Text PDF

Zeolites are widely used in high-temperature oil refining processes such as fluid catalytic cracking (FCC), hydrocracking, and aromatization. Significant energy cost are associated with these processes due to the high temperatures required. The induction heating promoted by magnetic nanoparticles (MNPs) under radio frequency fields could contribute to solving this problem by providing a supplementary amount of heat in a nano-localized way, just at the active centre site where the catalytic process takes place.

View Article and Find Full Text PDF

A 3D printing system able to print circuits of conductive epoxy resin doped with carbon nanotubes (CNTs) is proposed. Different simple circuits, more specifically lines and strain gauge patterns, made of resins reinforced with 0.3, 0.

View Article and Find Full Text PDF

Preliminary characterization of the microstructure of Al/SiCp composites prepared by Laser Metal Deposition (LMD) was analyzed, and the microhardness and wear behavior of the materials manufactured have been evaluated. It has been determined that the combined effect of the laser speed and power is decisive for the fabrication process. The microstructure characterization shows that the presence of hygroscopic AlC can be avoided by adding Ti to the composite matrix.

View Article and Find Full Text PDF

The effect of post-helium irradiation annealing on bubbles and nanoindentation hardness of two reduced activation ferritic martensitic steels for nuclear fusion applications (EUROFER97 and EU-ODS EUROFER) has been studied. Helium-irradiated EUROFER97 and EU-ODS EUROFER were annealed at 450 °C for 100 h in an argon atmosphere. The samples were tested by nanoindentation and studied by transmission electron microscopy extracting some focused ion beam lamellae containing the whole implanted zone (≈50 µm).

View Article and Find Full Text PDF

This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions.

View Article and Find Full Text PDF

Embolic events, particularly involving the central nervous system, represent one of the important hazards associated with the implantation of mechanical valves. The use of the transcranial Doppler to insonate the middle cerebral artery has allowed us to detect microembolic events in some of these patients. Patients with long term implantation and frequent microemboli appear to be more prone to transient ischemic attacks or stroke.

View Article and Find Full Text PDF

The effect of deferring immediate coronary artery bypass was evaluated in two groups of similar patients having successful direct coronary artery thrombolysis with streptokinase in the treatment of evolving myocardial infarction. Within 6 hours of onset of myocardial infarction, 140 patients underwent immediate cardiac catheterization and infusion of intracoronary streptokinase up to 500,000 units. Of those patients having restoration of orthograde coronary blood flow coupled with immediate evidence of myocardial salvage, 31 patients (group I) had immediate coronary artery bypass and 34 patients (group II) had coronary artery bypass deferred.

View Article and Find Full Text PDF