Publications by authors named "Rampoldi L"

Objective: The blood pressure (BP) response to salt intake (salt sensitivity) shows great variability among individuals and is more frequent in hypertensive patients. Elevated levels of the steroid hormone Endogenous Ouabain (EO) are associated with hypertension (HT) and salt sensitivity. The lanosterol synthase gene ( LSS ) plays a key role in the biosynthesis of steroids and its rs2254524 variant (Val642Leu) is linked to salt sensitivity in humans.

View Article and Find Full Text PDF

Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated Umod and Umod knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage.

View Article and Find Full Text PDF

Autosomal dominant tubulointerstitial kidney disease (ADTKD), a rare genetic disorder characterised by progressive chronic kidney disease, is caused by mutations in different genes, including REN, encoding renin. Renin is a secreted protease composed of three domains: the leader peptide that allows insertion in the endoplasmic reticulum (ER), a pro-segment regulating its activity, and the mature part of the protein. Mutations in mature renin lead to ER retention of the mutant protein and to late-onset disease, whereas mutations in the leader peptide, associated with defective ER translocation, and mutations in the pro-segment, leading to accumulation in the ER-to-Golgi compartment, lead to a more severe, early-onset disease.

View Article and Find Full Text PDF

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare inherited disorder characterized by progressive loss of kidney function, nonsignificant urinalysis and tubulointerstitial fibrosis. ADTKD progresses to end stage renal disease (ESRD) in adulthood. The classification of ADTKD is an evolving concept and the agreement is now that, due to the overlap in terms of phenotype characteristics, this should be based on the involved gene.

View Article and Find Full Text PDF

Anderson-Fabry Disease (FD) is an X-linked lysosomal disorder caused by mutations in the gene encoding the lysosomal hydrolase α-galactosidase A (α-Gal A), leading to accumulation of glycosphingolipids in the lysosomes. FD is a multisystemic disorder leading to progressive cardiovascular, cerebrovascular and kidney dysfunction. Phenotypes are divided in two main classes, classic or non-classic, depending on substrate accumulation, age at onset, disease manifestation, severity and progression.

View Article and Find Full Text PDF

The kidney-specific gene encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in contribute to CKD.

View Article and Find Full Text PDF
Article Synopsis
  • Uromodulin (UMOD) is a key gene linked to both simple and complex kidney diseases, with its protein being abundant in urine and associated with conditions like chronic kidney disease and hypertension.
  • Researchers conducted genome-wide screens using different assays to find significant genomic loci related to circulating uromodulin, identifying several key areas that influence its expression and functionality.
  • Their findings also connect uromodulin to other complex traits and suggest that certain genetic variants can affect serum uromodulin levels, providing a deeper understanding of its systemic roles and glycosylation patterns.
View Article and Find Full Text PDF

Hypertension is a significant risk factor for cardiovascular disease and mortality worldwide. The kidney is a major regulator of blood pressure and electrolyte homeostasis, with monogenic disorders indicating a link between abnormal ion transport and salt-sensitive hypertension. However, the association between salt and hypertension remains controversial.

View Article and Find Full Text PDF

Uromodulin, a protein exclusively produced by the kidney, is the most abundant urinary protein in physiological conditions. Already described several decades ago, uromodulin has gained the spotlight in recent years, since the discovery that mutations in its encoding gene cause a renal Mendelian disease (autosomal dominant tubulointerstitial kidney disease) and that common polymorphisms are associated with multifactorial disorders, such as chronic kidney disease, hypertension, and cardiovascular diseases. Moreover, variations in uromodulin levels in urine and/or blood reflect kidney functioning mass and are of prognostic value for renal function, cardiovascular events, and overall mortality.

View Article and Find Full Text PDF
Article Synopsis
  • HNF1B nephropathy results from heterozygous mutations in the HNF1B gene, causing a range of kidney-related symptoms and other body issues.
  • Researchers studied 7 families with 13 patients, all of whom had genetic testing and thorough medical assessments.
  • The study found a wide variety of kidney phenotypes and identified new pathogenic variants associated with HNF1B nephropathy, including a previously unreported occurrence of medullary sponge kidney in a patient.
View Article and Find Full Text PDF

Assembly of extracellular filaments and matrices mediating fundamental biological processes such as morphogenesis, hearing, fertilization, and antibacterial defense is driven by a ubiquitous polymerization module known as zona pellucida (ZP) "domain". Despite the conservation of this element from hydra to humans, no detailed information is available on the filamentous conformation of any ZP module protein. Here, we report a cryo-electron microscopy study of uromodulin (UMOD)/Tamm-Horsfall protein, the most abundant protein in human urine and an archetypal ZP module-containing molecule, in its mature homopolymeric state.

View Article and Find Full Text PDF

Renal epithelial cells regulate the destructive activity of macrophages and participate in the progression of kidney diseases. Critically, the Unfolded Protein Response (UPR), which is activated in renal epithelial cells in the course of kidney injury, is required for the optimal differentiation and activation of macrophages. Given that macrophages are key regulators of renal inflammation and fibrosis, we suppose that the identification of mediators that are released by renal epithelial cells under Endoplasmic Reticulum (ER) stress and transmitted to macrophages is a critical issue to address.

View Article and Find Full Text PDF

FAM46C is a non-canonical poly(A) polymerase uniquely mutated in up to 20% of multiple myeloma (MM) patients, implying a tissue-specific tumor suppressor function. Here, we report that FAM46C selectively stabilizes mRNAs encoding endoplasmic reticulum (ER)-targeted proteins, thereby concertedly enhancing the expression of proteins that control ER protein import, folding, N-glycosylation, and trafficking and boosting protein secretion. This role requires the interaction with the ER membrane resident proteins FNDC3A and FNDC3B.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers gathered clinical and genetic data from 722 individuals across 249 families, noting that men had a significantly higher risk of progressing to ESKD at a median age of 47 years.
  • * The study revealed a lower frequency of the rs4293393 allele than expected, making it impossible to conduct a Mendelian randomization, but identified a new score that could effectively predict the age of ESKD based on uromod
View Article and Find Full Text PDF

There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group).

View Article and Find Full Text PDF

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an increasingly recognized cause of end-stage kidney disease, primarily due to mutations in UMOD and MUC1. The lack of clinical recognition and the small size of cohorts have slowed the understanding of disease ontology and development of diagnostic algorithms. We analyzed two registries from Europe and the United States to define genetic and clinical characteristics of ADTKD-UMOD and ADTKD-MUC1 and develop a practical score to guide genetic testing.

View Article and Find Full Text PDF

Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques.

View Article and Find Full Text PDF

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a recently defined entity that includes rare kidney diseases characterized by tubular damage and interstitial fibrosis in the absence of glomerular lesions, with inescapable progression to end-stage renal disease. These diseases have long been neglected and under-recognized, in part due to confusing and inconsistent terminology. The introduction of a gene-based, unifying terminology led to the identification of an increasing number of cases, with recent data suggesting that ADTKD is one of the more common monogenic kidney diseases after autosomal dominant polycystic kidney disease, accounting for ~5% of monogenic disorders causing chronic kidney disease.

View Article and Find Full Text PDF
Article Synopsis
  • Uromodulin is a key protein produced in the kidneys and is crucial for normal urine composition; its malfunction is linked to kidney diseases.
  • Defective processing of uromodulin, caused by the absence of the enzyme hepsin, leads to altered salt transport in kidneys, resulting in sodium imbalance and better water adaptation initially.
  • In high-salt conditions, hepsin-deficient mice face issues like salt-wasting and kidney damage, highlighting the enzyme's critical role in maintaining kidney function and response to salt levels.
View Article and Find Full Text PDF

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a genetically heterogeneous renal disorder leading to progressive loss of renal function. ADTKD-REN is due to rare mutations in renin, all localized in the protein leader peptide and affecting its co-translational insertion in the endoplasmic reticulum (ER). Through exome sequencing in an adult-onset ADTKD family we identified a new renin variant, p.

View Article and Find Full Text PDF

Hydrocolloids have been intensively investigated due to their ability to modify the rheology of the system where they are employed. They find application as thickening and gelling agents in many food, cosmetic, and pharmaceutical preparations, due to their biocompatibility and biodegradability. The present study aims to provide an exhaustive and comprehensive viscoelastic characterization of a series of hydrocolloid formulations, as function of concentration, pH, and temperature.

View Article and Find Full Text PDF

Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the sensor inositol-requiring enzyme 1α (IRE1), an endoribonuclease that splices the mRNA of the transcription factor XBP1 (X-box-binding protein 1). To better understand the protein network that regulates the activity of the IRE1 pathway, we systematically screened the proteins that interact with IRE1 and identified a ribonuclease inhibitor called ribonuclease/angiogenin inhibitor 1 (RNH1). RNH1 is a leucine-rich repeat domains-containing protein that binds to and inhibits ribonucleases.

View Article and Find Full Text PDF
Article Synopsis
  • Whole-exome sequencing (WES) was studied for its effectiveness in diagnosing adults with chronic kidney disease (CKD) of unknown origins, with a focus on a cohort of 92 patients at an academic medical center.
  • WES successfully provided a diagnosis for 24% of patients, uncovering 13 distinct genetic disorders, including significant findings related to PARN mutations linked to renal fibrosis and a BRCA2 mutation associated with breast cancer.
  • Although results impacted clinical management by leading to targeted treatments and family screenings, the study's small sample size and specific recruitment limit the applicability of findings to the larger CKD population.
View Article and Find Full Text PDF

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an inherited disorder that causes progressive kidney damage and renal failure. Mutations in the UMOD gene, encoding uromodulin, lead to ADTKD-UMOD related. Uromodulin is a GPI-anchored protein exclusively produced by epithelial cells of the thick ascending limb of Henle's loop.

View Article and Find Full Text PDF