Publications by authors named "Rampazzo E"

Finding an effective treatment for T-PLL patients remains a significant challenge. Alemtuzumab, currently the gold standard, is insufficient in managing the aggressiveness of the disease in the long term. Consequently, numerous efforts are underway to address this unmet clinical need.

View Article and Find Full Text PDF

We have investigated the effect of dye distribution on the electrochemiluminescence (ECL) intensity measured with a simplified magnetic bead-based immunoassay for two families of silica nanoparticles (NPs) doped with the cationic Ru(bpy) and the zwitterionic Ru(bpy)bps complexes (bps = bathophenanthroline disulfonate). The NPs doped with the Ru(bpy)bps complex, which can efficiently self-organize in the NP volume favoring ECL generation, resulted in 150-400% signal enhancement compared to the Ru(bpy)-doped ones.

View Article and Find Full Text PDF

Introduction: Glioblastoma (grade IV) is the most aggressive primary brain tumor in adults, representing one of the biggest therapeutic challenges due to its highly aggressive nature. In this study, we investigated the impact of millimeter waves on tridimensional glioblastoma organoids derived directly from patient tumors. Our goal was to explore novel therapeutic possibilities in the fight against this challenging disease.

View Article and Find Full Text PDF

In the last few years, pulsed electric fields have emerged as promising clinical tools for tumor treatments. This study highlights the distinct impact of a specific pulsed electric field protocol, PEF-5 (0.3 MV/m, 40 μs, 5 pulses), on astrocytes (NHA) and medulloblastoma (D283) and glioblastoma (U87 NS) cancer stem-like cells (CSCs).

View Article and Find Full Text PDF

Type T Large Granular Lymphocyte Leukemia (T-LGLL) is a chronic disorder characterized by the abnormal proliferation of clonal cytotoxic T cells. The intriguing association of T-LGLL with autoimmune and inflammatory diseases, the most prominent example being rheumatoid arthritis, raises questions about the underlying pathophysiologic relationships between these disorders which share several biological and clinical features, most notably neutropenia, which is considered as a clinical hallmark. Recent progress in molecular genetics has contributed to a better understanding of pathogenetic mechanisms, thus moving our knowledge in the field of LGL leukemias forward.

View Article and Find Full Text PDF

Chemotherapy resistance is considered one of the main causes of tumor relapse, still challenging researchers for the identification of the molecular mechanisms sustaining its emergence. Here, we setup and characterized chemotherapy-resistant models of Medulloblastoma (MB), one of the most lethal pediatric brain tumors, to uncover targetable vulnerabilities associated to their resistant phenotype. Integration of proteomic, transcriptomic and kinomic data revealed a significant deregulation of several pathways in resistant MB cells, converging to cell metabolism, RNA/protein homeostasis, and immune response, eventually impacting on patient outcome.

View Article and Find Full Text PDF

Microenvironmental factors are known fundamental regulators of the phenotype and aggressiveness of glioblastoma (GBM), the most lethal brain tumor, characterized by fast progression and marked resistance to treatments. In this context, the extracellular matrix (ECM) is known to heavily influence the behavior of cancer cells from several origins, contributing to stem cell niches, influencing tumor invasiveness and response to chemotherapy, mediating survival signaling cascades, and modulating inflammatory cell recruitment. Here, we show that collagen VI (COL6), an ECM protein widely expressed in both normal and pathological tissues, has a distinctive distribution within the GBM mass, strongly correlated with the most aggressive and phenotypically immature cells.

View Article and Find Full Text PDF

Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments.

View Article and Find Full Text PDF

T-cell large granular lymphocyte leukemia (T-LGLL) is a chronic lymphoproliferative disorder characterized by the clonal expansion of T-cell large granular lymphocytes (T-LGL). Immunophenotypic and genotypic features contribute to discriminate symptomatic (CD8+ STAT3-mutated T-LGLL) from clinically indolent patients, this latter group including CD8+ wildtype (wt), CD4+ STAT5B-mutated and wt cases. T-LGL lymphoproliferation is sustained both by somatic gain-offunction mutations (i.

View Article and Find Full Text PDF

The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development.

View Article and Find Full Text PDF

Recent proteomic, metabolomic, and transcriptomic studies have highlighted a connection between changes in mitochondria physiology and cellular pathophysiological mechanisms. Secondary assays to assess the function of these organelles appear fundamental to validate these -omics findings. Although mitochondrial membrane potential is widely recognized as an indicator of mitochondrial activity, high-content imaging-based approaches coupled to multiparametric to measure it have not been established yet.

View Article and Find Full Text PDF
Article Synopsis
  • Juvenile myelomonocytic leukemia (JMML) is a rare childhood cancer defined by the overactivation of the RAS pathway in most patients, featuring high levels of granulocytes and monocytes.
  • Researchers developed a novel 3D model called patient-derived JMML Atypical Organoid (pd-JAO) that allows long-term growth and study of JMML cells with stem cell characteristics while mimicking the disease's microenvironment.
  • The study shows that these JMML cells gain growth advantages under low oxygen levels, revealing important insights into their metabolism, migration, and self-renewal, which could aid in the testing of new treatments to target JMML effectively.
View Article and Find Full Text PDF

Nanoparticles (NPs) are considered a promising tool in the context of biofilm control. Many studies have shown that different types of NPs can interfere with the bacterial metabolism and cellular membranes, thus making them potential antibacterial agents; however, fundamental understanding is still lacking on the exact mechanisms involved in these actions. The development of NP-based approaches for effective biofilm control also requires a thorough understanding of how the chosen nanoparticles will interact with the biofilm itself, and in particular with the biofilm self-produced extracellular polymeric matrix (EPS).

View Article and Find Full Text PDF

We previously demonstrated that Annexin A2 (ANXA2) is a pivotal mediator of the pro-oncogenic features displayed by glioblastoma (GBM) tumors, the deadliest adult brain malignancies, being involved in cell stemness, proliferation and invasion, thus negatively impacting patient prognosis. Based on these results, we hypothesized that compounds able to revert ANXA2-dependent transcriptional features could be exploited as reliable treatments to inhibit GBM cell aggressiveness by hampering their proliferative and migratory potential. Transcriptional signatures obtained by the modulation of ANXA2 activity/levels were functionally mapped through the QUADrATiC bioinformatic tool for compound identification.

View Article and Find Full Text PDF

Despite being subjected to high-dose chemo and radiotherapy, glioblastoma (GBM) patients still encounter almost inevitable relapse, due to the capability of tumor cells to disseminate and invade normal brain tissues. Moreover, the presence of a cancer stem cell (CSC) subpopulation, already demonstrated to better resist and evade treatments, further frustrates potential therapeutic approaches. In this context, we previously demonstrated that GBM is characterized by a tightly-regulated balance between the β-catenin cofactors TCF1 and TCF4, with high levels of TCF4 responsible for sustaining CSC in these tumors; thus, supporting their aggressive features.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur.

View Article and Find Full Text PDF

Objective: To date, no useful prognostic biomarker exists for patients with oral squamous cell carcinoma (OCSCC), a tumour with uncertain biological behaviour and subsequent unpredictable clinical course. We aim to investigate the prognostic significance of two recurrent somatic mutations (-124 C>T and -146 C>T) within the promoter of telomerase reverse transcriptase () gene and the impact of TERT single nucleotide polymorphism (SNP) rs2853669 in patients surgically treated for OCSCC.

Methods: The genetic frequencies of rs2853669, -124 C>T and -146 C>T as well as the telomere length were investigated in 144 tumours and 57 normal adjacent mucosal (AM) specimens from OCSCC patients.

View Article and Find Full Text PDF

Background: tumors are a major cause of morbidity and mortality after long-term solid organ transplantation. Chronic immunosuppression strongly affects solid organ transplanted (SOT) patients' immune system by promoting immune evasion strategies and reactivations of viruses with oncogenic potential, ultimately leading to cancer onset. In this scenario, an oncological Surveillance Protocol integrated with biobanking of peripheral blood samples and evaluation of immunovirological and molecular parameters was activated for SOT patients at CRO-IRCCS Aviano, with the aim of identifying suitable biomarkers of cancer development.

View Article and Find Full Text PDF

The exact role of malignant ascites in the development of intraperitoneal metastases remains unclear, and the mechanisms by which extracellular vesicles (EVs) promote tumor progression in the pre-metastatic niche have not been fully discovered. In this study, we characterized ascites from high-grade epithelial ovarian cancer patients. Small-EVs (30-150 nm) were isolated from two sources-the bulk ascites and the ascitic fluid-derived tumor cell cultures-and assessed with a combination of imaging, proteomic profiling, and protein expression analyses.

View Article and Find Full Text PDF

The growing numbers related to plastic pollution are impressive, with ca. 70 % of produced plastic (>350 tonnes/year) being indiscriminately wasted in the environment. The most dangerous forms of plastic pollution for biota and human health are micro- and nano-plastics (MNPs), which are ubiquitous and more bioavailable.

View Article and Find Full Text PDF

Endometrial cancer is the most common gynecologic malignancy arising from the endometrium. Identification of serum biomarkers could be beneficial for its early diagnosis. We have used 2D-Difference In Gel Electrophoresis (2D-DIGE) coupled with Mass Spectrometry (MS) procedures to investigate the serum proteome of 15 patients with endometrial cancer and 15 non-cancer subjects.

View Article and Find Full Text PDF

Luminescence quenching is a process exploited in transversal applications in science and technology and it has been studied for a long time. The luminescence quenching mechanisms are typically distinguished in dynamic (collisional) and static, which can require different quantitative treatments. This is particularly important - and finds broad and interdisciplinary application - when the static quenching is caused by the formation of an adduct between the luminophore - at the ground state - and the quencher.

View Article and Find Full Text PDF

Microplastics (MP) are micrometric plastic particles present in drinking water, food and the environment that constitute an emerging pollutant and pose a menace to human health. Novel methods for the fast detection of these new contaminants are needed. Fluorescence-based detection exploits the use of specific probes to label the MP particles.

View Article and Find Full Text PDF

Nanostructured systems constitute versatile carriers with multiple functions engineered in a nanometric space. Yet, such multimodality often requires adapting the chemistry of the nanostructure to the properties of the hosted functional molecules. Here, we show the preparation of core-shell Pluronic-organosilica "PluOS" nanoparticles with the use of a library of organosilane precursors.

View Article and Find Full Text PDF

Background: The interplay between neoplastic cells and surrounding extracellular matrix (ECM) is one of the determinant elements for cancer growth. The remodeling of the ECM by cancer-associated fibroblasts (CAFs) shapes tumor microenvironment by depositing and digesting ECM proteins, hence promoting tumor growth and invasion. While for epithelial tumors CAFs are well characterized, little is known about the stroma composition of mesenchymal cancers, such as in rhabdomyosarcoma (RMS), the most common soft tissue sarcoma during childhood and adolescence.

View Article and Find Full Text PDF