Publications by authors named "Ramona Wolf"

One of the main challenges in device-independent quantum key distribution (DIQKD) is achieving the required Bell violation over long distances, as the channel losses result in low overall detection efficiencies. Recent works have explored the concept of certifying nonlocal correlations over extended distances through the use of a local Bell test. Here, an additional quantum device is placed in close proximity to one party, using short-distance correlations to verify nonlocal behavior at long distances.

View Article and Find Full Text PDF

We use the formalism of strange correlators to construct a critical classical lattice model in two dimensions with the Haagerup fusion category H_{3} as input data. We present compelling numerical evidence in the form of finite entanglement scaling to support a Haagerup conformal field theory (CFT) with central charge c=2. Generalized twisted CFT spectra are numerically obtained through exact diagonalization of the transfer matrix, and the conformal towers are separated in the spectra through their identification with the topological sectors.

View Article and Find Full Text PDF

Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today's loophole-free Bell experiments.

View Article and Find Full Text PDF

Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations.

View Article and Find Full Text PDF

It is well known that the violation of a local uncertainty relation can be used as an indicator for the presence of entanglement. Unfortunately, the practical use of these nonlinear witnesses has been limited to few special cases in the past. However, new methods for computing uncertainty bounds have become available.

View Article and Find Full Text PDF