Mikrochim Acta
September 2024
The significance of HER-1 and CA 125 lies in their ability to guide cancer diagnosis, treatment, and monitoring, improving personalized care and enhancing prognostic accuracy. The utilization of HER-1 and CA 125 as screening biomarkers for the anticipation of early-stage cancer and monitoring cancer progression is expanding due to the invasive and costly nature of present techniques. In this study, a novel stochastic sensor was developed for the simultaneous determination of HER-1 and CA 125 in whole blood, saliva, and gastric tumor tissue samples using a fast, easy, inexpensive, and portable method.
View Article and Find Full Text PDFIn this study, a highly sensitive and quick electrochemical platform based on poly (crystal violet) film and copper oxide nanoparticles for the detection of brilliant blue FCF from various soft beverages was developed. The synthesized copper oxide nanoparticles were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray. Further, crystal violet was electropolymerized on the surface of the carbon paste electrode modified with copper oxide nanoparticles.
View Article and Find Full Text PDFMikrochim Acta
May 2023
A novel electrochemical platform for amaranth determination has been developed using a rapid, easy, inexpensive, and portable molecularly imprinted polymer technique. The MIP platform was fabricated by electropolymerizing melamine as monomer in the presence of amaranth as template on the surface of ZnO-MWCNT/SPCE. Then, amaranth was completely eluted, leaving imprinted cavities in the polymeric film that could effectively recognize amaranth in solution.
View Article and Find Full Text PDFTwo sensors based on sulfur-doped graphene, a gold nanoparticle paste modified with 5,10,15,20-tetraphenyl-21H,23H-porphine and 5,10,15,20-tetrakis (pentafluorophenyl chloride)-21H,23H-iron (III) porphyrin, were proposed for the determination of R-limonene in beverages (triple sec liqueur and limoncello). Differential pulse voltammetry was the method used to characterize and validate the proposed sensors. The response characteristics showed that the detection limits for both sensors were 3 × 10 mol L, while the quantification limits were 1 × 10 mol L.
View Article and Find Full Text PDFUltrasensitive determination of sorbic acid in food is essential for the assessment of the food quality. Therefore, two sensors based on nanographene decorated with gold nanoparticle paste modified with metal porphyrins (Zn protoporphyrin IX, and 2,3,7,8,12,13,17,18 octaethyl, 21H, 23H-porphirine Mn(III) chloride) were proposed for the determination of sorbic acid in food (bakery products and mayonnaise). Square-wave voltammetry was used for the characterization and validation of the proposed sensors.
View Article and Find Full Text PDFA novel electrochemical sensor based on the modification of carbon paste electrode with an ionic liquid (1-butyl-2,3-dimethylimidazolium tetrafluoroborate) and AuTiO/GO composite (IL/AuTiO/GO/CPE) was developed for rapid and sensitive determination of tartrazine by differential pulse voltammetry. Under the optimum experimental conditions, the peak current was linear to concentration of tartrazine in the ranges of 1-400 µmol L and 400-1000 µmol L, with sensitivities of 0.008 µA µmol L and 0.
View Article and Find Full Text PDF