The degradation of crude and weathered crude oil following the application of crude and calcium-alginate encapsulated ligninolytic enzymes was studied using in situ microcosms. Changes in the chemical composition of the oil were monitored in crude enzyme extracts, as well as a sediment matrix, for as long as 70 days. Compound-specific effects of ligninolytic enzymes applied to the sediments were observed over time through changes in concentration of total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs) and fractions of saturates, aromatics, resins and asphaltenes (SARA).
View Article and Find Full Text PDFMany military bases and their surrounding communities are impacted by contamination with per- and polyfluoroalkyl substances (PFAS) from Aqueous Film-Forming Foams (AFFFs). Soil sorption technologies provide a promising solution to immobilize PFAS in the soil and prevent groundwater and drinking water contamination. This article is the result of a collaborative effort between Battelle and the U.
View Article and Find Full Text PDFSixteen white-rot Basidiomycota isolates were screened for production of lignin-modifying enzymes (LME) in glycerol- and mandarin peel-containing media. In the synthetic medium, strains were the only high laccase (Lac) (3.2-9.
View Article and Find Full Text PDFPerfluorinated compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have recently drawn great attention due to their wide distribution in aquatic environments. The understanding of the physicochemical properties and fate and transport of PFAs in groundwater is still limited. Preliminary studies indicate that these compounds can readily bioaccumulate and pose human and animal health concerns.
View Article and Find Full Text PDFBench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production.
View Article and Find Full Text PDFThe function and longevity of traditional, passive, isolation caps can be augmented through the use of more chemically active capping materials which have higher sorptive capacities, ideally rendering metals non-bioavailable. In the case of Hg, active caps also mitigate the rate and extent of methylation. This research examined low cost, readily available, capping materials for their ability to sequester Hg and MeHg.
View Article and Find Full Text PDFA fractured sandstone aquifer at an industrial site is contaminated with trichloroethene to depths greater than 244 m. Field data indicate that trichloroethene is undergoing reduction to cis-1,2-dichloroethene (cDCE); vinyl chloride and ethene are present at much lower concentrations. Transformation of cDCE by pathways other than reductive dechlorination (abiotic and/or biotic) is of interest.
View Article and Find Full Text PDFA fractured sandstone aquifer at an industrial site in southern California is contaminated with trichloroethene (TCE) and cis-1,2-dichloroethene (cis-DCE) to depths in excess of 244 m. Field monitoring data suggest that TCE is undergoing reduction to cis-DCE and that additional attenuation is occurring. However, vinyl chloride (VC) and ethene have not been detected in significant amounts, so that if transformation is occurring, a process other than reductive dechlorination must be responsible.
View Article and Find Full Text PDF