Publications by authors named "Ramon van der Valk"

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. Tethered particle motion (TPM) permits analysis of DNA conformation and detection of changes in conformation induced by such proteins at the single molecule level in vitro. As many individual protein-DNA complexes can be investigated in parallel, these experiments have high throughput.

View Article and Find Full Text PDF

DNA looping is important for genome organization in all domains of life. The basis of DNA loop formation is the bridging of two separate DNA double helices. Detecting DNA bridge formation generally involves the use of complex single-molecule techniques (atomic force microscopy, magnetic or optical tweezers).

View Article and Find Full Text PDF

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.

View Article and Find Full Text PDF

In archaea, histones play a role in genome compaction and are involved in transcription regulation. Whereas archaeal histones bind DNA without sequence specificity, they bind preferentially to DNA containing repeats of alternating A/T and G/C motifs. These motifs are also present on the artificial sequence "Clone20," a high-affinity model sequence for binding of the histones from .

View Article and Find Full Text PDF

Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone-DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an 'endless' histone-protein core.

View Article and Find Full Text PDF

FtsH is a membrane-bound protease that plays a crucial role in proteolytic regulation of many cellular functions. It is universally conserved in bacteria and responsible for the degradation of misfolded or misassembled proteins. A recent study has determined the structure of bacterial FtsH in detergent micelles.

View Article and Find Full Text PDF

AAA+ proteases are degradation machines that use ATP hydrolysis to unfold protein substrates and translocate them through a central pore toward a degradation chamber. FtsH, a bacterial membrane-anchored AAA+ protease, plays a vital role in membrane protein quality control. How substrates reach the FtsH central pore is an open key question that is not resolved by the available atomic structures of cytoplasmic and periplasmic domains.

View Article and Find Full Text PDF

DNA looping is important for genome organization in all domains of life. The basis of DNA loop formation is the bridging of two separate DNA double helices. Detecting DNA bridge formation generally involves the use of complex single-molecule techniques (atomic force microscopy, magnetic, or optical tweezers).

View Article and Find Full Text PDF

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.

View Article and Find Full Text PDF

In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has proven to be a powerful tool for the study of DNA-protein interactions due to its ability to image single molecules at the nanoscale. However, the use of AFM in force spectroscopy to study DNA-protein interactions has been limited. Here we developed a high throughput, AFM based, pulling assay to measure the strength and kinetics of protein bridging of DNA molecules.

View Article and Find Full Text PDF

Bacteria frequently need to adapt to altered environmental conditions. Adaptation requires changes in gene expression, often mediated by global regulators of transcription. The nucleoid-associated protein H-NS is a key global regulator in -negative bacteria and is believed to be a crucial player in bacterial chromatin organization via its DNA-bridging activity.

View Article and Find Full Text PDF

Architectural DNA binding proteins are key to the organization and compaction of genomic DNA inside cells. Tethered Particle Motion (TPM) permits analysis of DNA conformation and detection of changes in conformation induced by such proteins at the single molecule level in vitro. As many individual protein-DNA complexes can be investigated in parallel, these experiments have high throughput.

View Article and Find Full Text PDF

Sso10a proteins are small DNA-binding proteins expressed by the crenarchaeal model organism Sulfolobus solfataricus. Based on the structure of Sso10a1, which contains a winged helix-turn-helix motif, it is believed that Sso10a proteins function as sequence-specific transcription factors. Here we show that Sso10a1 and Sso10a2 exhibit different distinct DNA-binding modes.

View Article and Find Full Text PDF

The effective volume occupied by the genomes of all forms of life far exceeds that of the cells in which they are contained. Therefore, all organisms have developed mechanisms for compactly folding and functionally organizing their genetic material. Through recent advances in fluorescent microscopy and 3C-based technologies, we finally have a first glimpse into the complex mechanisms governing the 3-D folding of genomes.

View Article and Find Full Text PDF