Publications by authors named "Ramon V Rosal"

We previously demonstrated that a synthetic monomer peptide derived from the C-terminus of p53 (aa 361−382) induced preferential apoptosis in mutant p53 malignant cells, but not normal cells. The major problem with the peptide was its short half-life (half-life < 10 min.) due to a random coil topology found in 3D proton NMR spectroscopy studies.

View Article and Find Full Text PDF

One of the interesting puzzles of amyloid beta-peptide of Alzheimer's disease (Abeta) is that it appears to polymerize into amyloid fibrils in a parallel beta sheet topology, while smaller subsets of the peptide produce anti-parallel beta sheets. In order to target potential weak points of amyloid fibrils in a rational drug design effort, it would be helpful to understand the forces that drive this change. We have designed two peptides CHQKLVFFAEDYNGKDEAFFVLKQHW and CHQKLVFFAEDYNGKHQKLVFFAEDW that join the significant amyloidogenic Abeta (14-23) sequence HQKLVFFAED in parallel and anti-parallel topologies, respectively.

View Article and Find Full Text PDF

A p53 C-terminal peptide (aa 361-382, p53p), fused at its C-terminus to the minimal carrier peptide of antennapedia (17 aa, Ant; p53p-Ant), induced rapid apoptosis in human cancer cells, via activation of the Fas pathway. We examined p53p-Ant mechanism of action, toxicity in various human normal, non-malignant, pre-malignant and malignant cancer cells and investigated its biophysical characteristics. p53p-Ant selectively induced cell death in only pre-malignant or malignant cells in a p53-dependent manner and was not toxic to normal and non-malignant cells.

View Article and Find Full Text PDF

Computational protein chemistry has potential to contribute to the development of new therapeutic approaches in medicine in several different ways, including indirectly by increasing understanding of the disease-associated changes in protein structure that are mechanistically important, which can have diagnostic implications, as well as directly in designing peptides to counteract the patho-physiologic effects of these changes. Studies of the role of the tumor suppressor protein p53 in the carcinogenic process provide examples of both types of contribution. Computational studies of the effects of mutations in p53 on its structure have provided insights into cancer mechanisms and have served to elucidate potential new diagnostic approaches based on the identification of changes in p53 structure.

View Article and Find Full Text PDF

p53 is the most frequently altered gene in human cancer and therefore represents an ideal target for cancer therapy. Several amino terminal p53-derived synthetic peptides were tested for their antiproliferative effects on breast cancer cell lines MDA-MB-468 (mutant p53), MCF-7 (overexpressed wild-type p53), and MDA-MB-157 (null p53). p53(15)Ant peptide representing the majority of the mouse double minute clone 2 binding site on p53 (amino acids 12-26) fused to the Drosophila carrier protein Antennapedia was the most effective.

View Article and Find Full Text PDF

Two membrane transporters, the 17 amino acid (aa) oligopeptide penetratin derived from the homeodomain of Antennapedia (Ant) and an analogue of the basic domain of TAT (aa 47-57) (TAT-a) from HIV-1, were tested as carriers for a p53 C-terminal peptide (aa 361-382) into human breast cancer cells. The studies were performed to determine whether the membrane-transduction efficiency of membrane carriers: Ant, TAT or TAT analogue (TAT-a) correlated with peptide hydrophobic features. Peptide-sequence analysis clearly demonstrated that the Ant sequence and p53 peptide sequence (p53p) together created a peptide with enhanced hydrophobic characteristics; while the TAT or TAT analogue (TAT-a) and p53p sequence together created a peptide with significantly less hydrophobic qualities.

View Article and Find Full Text PDF