Publications by authors named "Ramon Pouplana"

A novel group of aryl methyl sulfones based on nonsteroidal anti-inflammatory compounds exhibiting a methyl sulfone instead of the acetic or propionic acid group was designed, synthesized and evaluated in vitro for inhibition against the human cyclooxygenase of COX-1 and COX-2 isoenzymes and in vivo for anti-inflammatory activity using the carrageenan induced rat paw edema model in rats. Also, in vitro chemosensitivity and in vivo analgesic and intestinal side effects were determined for defining the therapeutic and safety profile. Molecular modeling assisted the design of compounds and the interpretation of the experimental results.

View Article and Find Full Text PDF

Amyloid beta (Aβ) oligomerization is associated with the origin and progression of Alzheimer's disease (AD). While the A2V mutation enhances aggregation kinetics and toxicity, mixtures of wild-type (WT) and A2V, and also WT and A2T, peptides retard fibril formation and protect against AD. In this study, we simulate the equilibrium ensemble of WT:A2T Aβ dimer by means of extensive atomistic replica exchange molecular dynamics and compare our results with previous equivalent simulations of A2V:A2V, WT:WT, and WT:A2V Aβ dimers for a total time scale of nearly 0.

View Article and Find Full Text PDF

Predicting the conformational preferences of flexible compounds is a challenging problem in drug design, where the recognition between ligand and receptor is affected by the ability of the interacting partners to adopt a favorable conformation for the binding. To explore the conformational space of flexible ligands and to obtain the relative free energy of the conformation wells, we have recently reported a multilevel computational strategy that relies on the predominant-state approximation-where the conformational space is partitioned into distinct conformational wells-and combines a low-level method for sampling the conformational minima and high-level ab initio calculations for estimating their relative stability. In this study, we assess the performance of the multilevel strategy for predicting the conformational preferences of a series of structurally related phenylethylamines and streptomycin in aqueous solution.

View Article and Find Full Text PDF

The evolution of a ternary molecular system (imine, diene and nitrile) is analyzed to disclose the pathways leading to a divergent synthetic outcome. The Lewis acid catalyzed reaction between cyclohexadiene, 2-phenyl-indol-3-one and acetonitrile yields the imino-Diels-Alder adduct as the major product together with minor amounts of the Mannich-Ritter-amidine product. The experimental and computational data show that the relative orientation of the initial reactants dictates the synthetic outcome.

View Article and Find Full Text PDF

A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel compounds (3-9) have been designed using a conjunctive approach that combines the benzylpiperidine moiety of the AChE inhibitor donepezil (1) and the indolyl propargylamino moiety of the MAO inhibitor N-[(5-benzyloxy-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine (2), connected through an oligomethylene linker. The most promising hybrid (5) is a potent inhibitor of both MAO-A (IC50=5.

View Article and Find Full Text PDF

Following our previous research on anti-inflammatory drugs (NSAIDs), we report on the design and synthesis of 4-(aryloyl)phenyl methyl sulfones. These substances were characterized for their capacity to inhibit cyclooxygenase (COX-1 and COX-2) isoenzymes. Molecular modeling studies showed that the methylsulfone group of these compounds was inserted deep in the pocket of the human COX-2 binding site, in an orientation that precludes hydrogen bonding with Arg120, Ser353, and Tyr355 through their oxygen atoms.

View Article and Find Full Text PDF

Carboxylesterases (CEs) are a family of ubiquitous enzymes with broad substrate specificity, and their inhibition may have important implications in pharmaceutical and agrochemical fields. One of the most potent inhibitors both for mammalian and insect CEs are trifluoromethyl ketones (TFMKs), but the mechanism of action of these chemicals is not completely understood. This study examines the balance between reactivity versus steric effects in modulating the activity against human carboxylesterase 1.

View Article and Find Full Text PDF

Recent experiments with amyloid-beta (Abeta) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques.

View Article and Find Full Text PDF

The dual or selective ability of 24 derived mono- and 2,6-di-tert-butylphenols (DTBP) to act as inhibitors of cyclooxygenase (COX) and/or 5-lipoxygenase (LOX) enzymes is investigated. Firstly, we explored the conformational variability of the compounds. It is found that dual inhibitors can adopt four minimum energy conformations: cis or trans, depending on the orientation of the carbonyl oxygen atom (localized in the para position) relative to the hydroxyl hydrogen, and alpha or beta, depending on whether the carbonyl oxygen is below or above the phenyl plane.

View Article and Find Full Text PDF