J Ind Microbiol Biotechnol
February 2017
Acetaldehyde strongly binds to the wine preservative SO and, on average, causes 50-70 mg l of bound SO in red and white wines, respectively. Therefore, a reduction of bound and total SO concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions.
View Article and Find Full Text PDFAcetaldehyde is relevant for wine aroma, wine color, and microbiological stability. Yeast are known to play a crucial role in production and utilization of acetaldehyde during fermentations but comparative quantitative data are scarce. This research evaluated the acetaldehyde metabolism of 26 yeast strains, including commercial Saccharomyces and non-Saccharomyces, in a reproducible resting cell model system.
View Article and Find Full Text PDFThe iron requirements of the opportunistic pathogenic yeast, Candida albicans, and the related nonpathogenic spoilage yeast Candida vini were investigated along with their responses to various exogenous iron chelators. The influence of iron as well as the exogenous chelating agents lactoferrin, EDTA, deferiprone, desferrioxamine, bathophenanthroline sulphonate and a novel carried chelator with a hydroxypyridinone-like Fe-ligand functionality, DIBI, on fungal growth was studied in a chemically defined medium deferrated to trace iron levels (<1.2 microg L(-1) or 0.
View Article and Find Full Text PDFWine lactic acid bacteria (LAB) are responsible for the malolactic fermentation (MLF) in wine production. Wine LAB have fastidious nutrient requirements but their auxotrophies remain little studied. The ability of specific wine nutrients to meet the nutritional requirements of wine LAB, and thus support MLF, remains unclear.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2009
Arginine metabolism by wine lactic acid bacteria (LAB) may lead to wine quality degradation. While arginine is essential for growth of the wine relevant LAB Oenococcus oeni, it remains unclear whether it also stimulates its growth. This study evaluated the effect of arginine and citrulline, the partially metabolized intermediate of the arginine deiminase pathway, on the growth of two commercial O.
View Article and Find Full Text PDFInoculating grape musts with wine yeast and lactic acid bacteria (LAB) concurrently in order to induce simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) can be an efficient alternative to overcome potential inhibition of LAB in wines because of high ethanol concentrations and reduced nutrient content. In this study, the simultaneous inoculation of yeast and LAB into must was compared with a traditional vinification protocol, where MLF was induced after completion of AF. For this, two suitable commercial yeast-bacterium combinations were tested in cool-climate Chardonnay must.
View Article and Find Full Text PDF