Publications by authors named "Ramon Menta"

Background: Mesenchymal stem cells (MSCs) activate the endogenous immune regulatory system, inducing a therapeutic effect in recipients. MSCs have demonstrated the ability to modulate the differentiation of myeloid cells toward a phagocytic and anti-inflammatory profile. Allogeneic, adipose-derived MSCs (ASCs) have been investigated for the management of complex perianal fistula, with darvadstrocel being the first ASC therapy approved in Europe in March 2018.

View Article and Find Full Text PDF

Adipose mesenchymal stem cells (ASC) are considered minimally immunogenic. This is due to the low expression of human leukocyte antigens I (HLA-I), lack of HLA-II expression and low expression of co-stimulatory molecules such as CD40 and CD80. The low rate of observed immunological rejection as well as the immunomodulatory qualities, position ASC as a promising cell-based therapy for the treatment of a variety of inflammatory indications.

View Article and Find Full Text PDF

Transplantation of allogeneic human cardiac/stem progenitor cells (hCSCs) is currently being tested in several phase I/II clinical trials as a novel and promising therapy for restoration of myocardial tissue function in acute myocardial infarction (AMI) patients. Previous findings demonstrate that these cells have an immune suppressive profile interacting with different populations from the immune system, resulting in overall attenuation of myocardial inflammation. However, transplanted hCSCs are still recognized and cleared from the injured site, impairing long retention times in the tissue that could translate into a higher clinical benefit.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have emerged as a promising treatment for inflammatory diseases. The immunomodulatory effect of MSCs takes place both by direct cell-to-cell contact and by means of soluble factors that leads to an increased accumulation of regulatory immune cells at the sites of inflammation. Similar efficacy of MSCs has been described regardless of the route of administration used, the inflammation conditions and the major histocompatibility complex context.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells have potential applications in inflammatory bowel disease due to their immunomodulatory properties. Our aim was to evaluate the feasibility, safety and efficacy of endoscopic administration of adipose-derived mesenchymal stem cells (ASCs) in a colitis model in rats.

Methods: Colitis was induced in rats by rectal trinitrobenzenesulfonic acid (TNBS).

View Article and Find Full Text PDF

Cardiac repair following MI relies on a finely regulated immune response involving sequential recruitment of monocytes to the injured tissue. Monocyte-derived cells are also critical for tissue homeostasis and healing process. Our previous findings demonstrated the interaction of T and natural killer cells with allogeneic human cardiac-derived stem/progenitor cells (hCPC) and suggested their beneficial effect in the context of cardiac repair.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have a large potential in cell therapy for treatment of inflammatory and autoimmune diseases, thanks to their immunomodulatory properties. The encouraging results in animal models have initiated the translation of MSC therapy to clinical trials. In cell therapy protocols with MSCs, administered intravenously, several studies have shown that a small proportion of infused MSCs can traffic to the draining lymph nodes (LNs).

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are multipotent stromal cells with immunomodulatory properties. They have emerged as a very promising treatment for autoimmunity and inflammatory diseases such as rheumatoid arthritis. Previous studies have demonstrated that MSCs, administered systemically, migrate to lymphoid tissues associated with the inflammatory site where functional MSC-induced immune cells with a regulatory phenotype were increased mediating the immunomodulatory effects of MSCs.

View Article and Find Full Text PDF

Modulation of innate immune responses in rheumatoid arthritis and other immune-mediated disorders is of critical importance in the clinic since a growing body of information has shown the key contribution of dysregulated innate responses in the progression of the disease. Mesenchymal stromal cells (MSCs) are the focus of intensive efforts worldwide due to their key role in tissue regeneration and modulation of inflammation. In this study, we define innate immune responses occurring during the early course of treatment with a single dose of expanded adipose-derived MSCs (eASCs) in established collagen-induced arthritis.

View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stem cells (MSCs) are promising candidates for treating autoimmune and inflammatory diseases, like rheumatoid arthritis, due to their ability to suppress inflammation.
  • A study showed that administering human adipose-derived MSCs (eASCs) to mice with arthritis significantly reduced disease severity and decreased pathogenic GM-CSF-expressing CD4 T cells.
  • The treatment also increased various regulatory T cell subsets in the lymph nodes, indicating a shift towards a better balance between regulatory and inflammatory cells, which suggests a potential therapeutic role for eASCs in managing arthritis.
View Article and Find Full Text PDF

The immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) make them an attractive therapeutic tool to treat chronic inflammatory diseases, such as rheumatoid arthritis or Crohn's disease. These indications are characterized by a chronic activation of immune cells that perpetuates the disease. In vitro, when adipose mesenchymal stem cells (ASCs) are cultured with T lymphocytes at the time of stimulation, their proliferation is inhibited.

View Article and Find Full Text PDF

Background Aims: Mesenchymal stromal cells hold special interest for cell-based therapy because of their tissue-regenerative and immunosuppressive abilities. B-cell involvement in chronic inflammatory and autoimmune pathologies makes them a desirable target for cell-based therapy. Mesenchymal stromal cells are able to regulate B-cell function; although the mechanisms are little known, they imply cell-to-cell contact.

View Article and Find Full Text PDF

Background Aims: Mesenchymal stromal cells (MSCs) have immunomodulatory properties that are mediated by cell-to-cell interactions and paracrine effects through soluble factors, among which tryptophan (Trp) conversion into kynurenine (Kyn) through the enzymatic activity of indoleamine 2,3-dioxygenase has been proven to be of special relevance. However, the respective role of Trp depletion and/or Kyn accumulation on the inhibition of T-cell proliferation by MSCs remains unclear.

Methods: The effect of supplementation with increasing concentrations of Trp on the capacity of MSCs to inhibit T-lymphocyte proliferation in vitro was investigated.

View Article and Find Full Text PDF

Given their capacity to modulate the immune response, adipose mesenchymal stem or stromal cells (ASCs) have been used as therapeutic tools to treat chronic inflammatory and autoimmune diseases both in preclinical and clinical studies. Patients enrolled in such clinical trials are often concomitantly treated with immunomodulatory drugs such as methotrexate (MTX) or azathioprine (AZA). Therefore it is necessary to investigate the possible impact of these drugs on ASC function to learn if there are any interactions that would affect the therapeutic effects of either component and thus the clinical outcome of the trials.

View Article and Find Full Text PDF

Human adipose-derived stem cells (hASCs) have been successfully used in treating numerous diseases. However, several aspects need to be considered, particularly in the context of allogeneic cell therapy. To better understand hASCs-host interactions, we studied the phenotype of hASCs and their modulatory effect on natural killer (NK) cells by using bone marrow-mesenchymal stem cells (hBM-MSCs) as a reference.

View Article and Find Full Text PDF

Human adipose-derived mesenchymal stem cells (hASCs) are mesenchymal stem cells (MSCs) with reduced immunogenicity and capability to modulate immune responses. Whereas the immunosuppressive activity of bone marrow-MSCs has received considerable attention during the last few years, the specific mechanisms underlying hASC-mediated immunosuppression have been poorly studied. Recent studies comparing both cell types have reported differences at transcriptional and proteomic levels, suggesting that hASCs and bone marrow-MSCs, while having similarities, are quite different.

View Article and Find Full Text PDF

Human adipose-derived stem cells (hASCs) are mesenchymal stem cells with reduced immunogenicity and the capability to modulate immune responses. These properties make hASCs of special interest as therapeutic agents in the settings of chronic inflammatory and autoimmune diseases. Exogenous and endogenous toll-like receptor (TLR) ligands have been linked with the perpetuation of inflammation in a number of chronic inflammatory diseases such as inflammatory bowel disease and rheumatoid arthritis because of the permanent exposure of the immune system to TLR-specific stimuli.

View Article and Find Full Text PDF