The use of deep eutectic solvents (DESs) for the preparation of polymer membranes for environmental separation technologies is comprehensively reviewed. DESs have been divided into five categories based on the hydrogen bond donor (HBD) and acceptor (HBA) that are involved in the production of the DESs, and a wide range of DESs' physicochemical characteristics, such as density, surface tension, viscosity, and melting temperature, are initially gathered. Furthermore, the most popular techniques for creating membranes have been demonstrated and discussed, with a focus on the non-solvent induced phase separation (NIPS) method.
View Article and Find Full Text PDFPoly(ethylene terephthalate) (PET) waste accumulation poses significant environmental challenges due to its persistent nature and current management limitations. This study explores the effectiveness of imidazolium-based neoteric solvents [Emim][OAc] and [Bmim][OAc] as catalytic co-solvents in the glycolysis of PET with ethylene glycol (EG). Reaction thermal kinetics showed that both ionic liquids (ILs) significantly enhanced the depolymerization rate of PET compared to traditional methods.
View Article and Find Full Text PDFSuperhydrophobic poly(vinylidene fluoride) (PVDF) membranes were obtained by a surface treatment consisting of oxygen plasma activation followed by functionalisation with a mixture of silica precursor (SiP) (tetraethyl-orthosilicate [TEOS] or 3-(triethoxysilyl)-propylamine [APTES]) and a fluoroalkylsilane (1H,1H,2H,2H-perfluorooctyltriethoxysilane), and were benchmarked with coated membranes without plasma activation. The modifications acted mainly on the surface, and the bulk properties remained stable. From a statistical design of experiments on surface hydrophobicity, the type of SiP was the most relevant factor, achieving the highest water contact angles (WCA) with the use of APTES, with a maximum WCA higher than 155° for membranes activated at a plasma power discharge of 15 W during 15 min, without membrane degradation.
View Article and Find Full Text PDFCharacterisation of the fouling attached to PVDF membranes treating an anaerobic effluent for dissolved CH recovery was carried out. A commercial flat-sheet PVDF membrane and a PVDF functionalised by grafting of organofluorosilanes (mPVDF) that increased its hydrophobicity were subjected to a continuous flux of an anaerobic reactor effluent in long-term operation tests (> 800 h). The fouling cakes were studied by the membrane autopsy after these tests, combining a staining technique, FTIR, and FESEM-EDX, and the fouling extraction with water and NaOH solutions.
View Article and Find Full Text PDFDue to widespread use of nanoparticles in surfactant-based formulations, their release into the environment and wastewater is unavoidable and toxic for biota and/or wastewater treatment processes. Because of concerns over the environmental impacts of nanofluids, studies of the fate and environmental impacts, hazards, and toxicities of nanoparticles are beginning. However, interactions between nanoparticles and surfactants and the biodegradability of these mixtures have been little studied until now.
View Article and Find Full Text PDFA three-step surface modification consisting of activation with NaOH, functionalisation with a silica precursor and organofluorosilane mixture (FSiT), and curing was applied to a poly(vinylidene fluoride) (PVDF) membrane for the recovery of dissolved methane (D-CH4) from aqueous streams. Based on the results of a statistical experimental design, the main variables affecting the water contact angle (WCA) were the NaOH concentration and the FSiT ratio and concentration used. The maximum WCA of the modified PVDF (mPVDFmax) was >140° at a NaOH concentration of 5%, an FSiT ratio of 0.
View Article and Find Full Text PDF