Pathological events are well characterized in amyotrophic lateral sclerosis (ALS) mouse models, but review of the literature fails to identify a specific initiating event that precipitates disease pathology. There is now growing consensus in the field that axon and synapses are first cellular sites of degeneration, but controversy exists over whether axon and synapse loss is initiated autonomously at those sites or by pathology in the cell body, in nonneuronal cells or even in nonmotoneurons (MNs). Previous studies have identified pathological events in the mutant superoxide dismutase 1 (SOD1) models involving spinal cord, peripheral axons, neuromuscular junctions (NMJs), or muscle; however, few studies have systematically examined pathogenesis at multiple sites in the same study.
View Article and Find Full Text PDFCharcot first described amyotrophic lateral sclerosis (ALS) in 1869; however, its causes remain largely unknown and effective, long-term treatment strategies are not available. The first mouse model of ALS was developed after the identification of mutations in the superoxide dismutase 1 (SOD1) gene in 1993, and accordingly most of our knowledge of the etiology and pathogenesis of the disease comes from studies carried out using this animal model. Although numerous preclinical trials have been conducted in the mutant SOD1 mouse models, the results have been disappointing because they did not positively translate to clinical trials.
View Article and Find Full Text PDFThe endoplasmic/sarcoplasmic reticulum (ER/SR) plays a crucial role in cytoplasmic signalling in a variety of cells. It is particularly relevant to skeletal muscle fibres, where this organelle constitutes the main Ca2+ store for essential functions, such as contraction. In this work, we expressed the cameleon biosensor D1ER by in vivo electroporation in the mouse flexor digitorum brevis (FDB) muscle to directly assess SR Ca2+ depletion in response to electrical and pharmacological stimulation.
View Article and Find Full Text PDFExcitation-contraction (EC) coupling in a population of skeletal muscle fibers of aged mice becomes dependent on the presence of external Ca(2+) ions (Payne, A.M., Zheng, Z.
View Article and Find Full Text PDFThis study hypothesized that decline in sarcoplasmic reticulum (SR) Ca(2+) release and maximal SR-releasable Ca(2+) contributes to decreased specific force with aging. To test it, we recorded electrically evoked maximal isometric specific force followed by 4-chloro-m-cresol (4-CmC)-evoked maximal contracture force in single intact fibers from the mouse flexor digitorum brevis muscle. Significant differences in tetanic, but not in 4-CmC-evoked, contracture forces were recorded in fibers from aging mice as compared to younger mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2007
Skeletal muscle constitutes approximately 40% of the human body mass, and alterations in muscle mass and strength may result in physical disability. Therefore, the elucidation of the factors responsible for muscle force development is of paramount importance. Excitation-contraction coupling (ECC) is a process during which the skeletal muscle surface membrane is depolarized, causing a transient release of calcium from the sarcoplasmic reticulum that activates the contractile proteins.
View Article and Find Full Text PDFWe investigated the effects of exclusive and sustained transgenic overexpression of insulin-like growth factor (IGF)-I in the central nervous system (CNS) on the age-dependent decline in muscle strength, excitation-contraction coupling, muscle innervation and neuromuscular junction postterminal architecture. We found that (1) transgenic IGF-I overexpression in the CNS does not modify the decline in extensor digitorum longus (EDL) and soleus muscle weight with aging and (2) strength significantly decreases in transgenic (Tg) compared to wild-type mice. The latter finding is consistent with (3) the decreased absolute and specific force measured in the EDL muscle in vitro and (4) the decreased charge movement and peak intracellular Ca(2+) mobilization in individual muscle fibers from old IGF-I Tg mice compared to young wild-type mice, which also is associated with (5) decreased dihydropyridine receptor alpha(1)-subunit expression in old compared to young IGF-I Tg mice.
View Article and Find Full Text PDF