Motivation: Accumulation models, where a system progressively acquires binary features over time, are common in the study of cancer progression, evolutionary biology, and other fields. Many approaches have been developed to infer the accumulation pathways by which features (e.g.
View Article and Find Full Text PDFAccumulation processes, where many potentially coupled features are acquired over time, occur throughout the sciences from evolutionary biology to disease progression, and particularly in the study of cancer progression. Existing methods for learning the dynamics of such systems typically assume limited (often pairwise) relationships between feature subsets, cross-sectional or untimed observations, small feature sets, or discrete orderings of events. Here we introduce HyperTraPS-CT (Hypercubic Transition Path Sampling in Continuous Time) to compute posterior distributions on continuous-time dynamics of many, arbitrarily coupled, traits in unrestricted state spaces, accounting for uncertainty in observations and their timings.
View Article and Find Full Text PDFEpistatic interactions between mutations add substantial complexity to adaptive landscapes and are often thought of as detrimental to our ability to predict evolution. Yet, patterns of global epistasis, in which the fitness effect of a mutation is well-predicted by the fitness of its genetic background, may actually be of help in our efforts to reconstruct fitness landscapes and infer adaptive trajectories. Microscopic interactions between mutations, or inherent nonlinearities in the fitness landscape, may cause global epistasis patterns to emerge.
View Article and Find Full Text PDFBioinformatics
December 2022
Summary: EvAM-Tools is an R package and web application that provides a unified interface to state-of-the-art cancer progression models and, more generally, evolutionary models of event accumulation. The output includes, in addition to the fitted models, the transition (and transition rate) matrices between genotypes and the probabilities of evolutionary paths. Generation of random cancer progression models is also available.
View Article and Find Full Text PDFAccurate prediction of tumor progression is key for adaptive therapy and precision medicine. Cancer progression models (CPMs) can be used to infer dependencies in mutation accumulation from cross-sectional data and provide predictions of tumor progression paths. However, their performance when predicting complete evolutionary trajectories is limited by violations of assumptions and the size of available data sets.
View Article and Find Full Text PDFUnderstanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes.
View Article and Find Full Text PDFI show how to use OncoSimulR, software for forward-time genetic simulations, to simulate evolution of asexual populations in the presence of epistatic interactions. This chapter emphasizes the specification of fitness and epistasis, both directly (i.e.
View Article and Find Full Text PDFMotivation: How predictable is the evolution of cancer? This fundamental question is of immense relevance for the diagnosis, prognosis and treatment of cancer. Evolutionary biologists have approached the question of predictability based on the underlying fitness landscape. However, empirical fitness landscapes of tumor cells are impossible to determine in vivo.
View Article and Find Full Text PDFPLoS Comput Biol
August 2019
Successful prediction of the likely paths of tumor progression is valuable for diagnostic, prognostic, and treatment purposes. Cancer progression models (CPMs) use cross-sectional samples to identify restrictions in the order of accumulation of driver mutations and thus CPMs encode the paths of tumor progression. Here we analyze the performance of four CPMs to examine whether they can be used to predict the true distribution of paths of tumor progression and to estimate evolutionary unpredictability.
View Article and Find Full Text PDFBioinformatics
March 2018
Motivation: The identification of constraints, due to gene interactions, in the order of accumulation of mutations during cancer progression can allow us to single out therapeutic targets. Cancer progression models (CPMs) use genotype frequency data from cross-sectional samples to identify these constraints, and return Directed Acyclic Graphs (DAGs) of restrictions where arrows indicate dependencies or constraints. On the other hand, fitness landscapes, which map genotypes to fitness, contain all possible paths of tumor progression.
View Article and Find Full Text PDFSummary: OncoSimulR implements forward-time genetic simulations of biallelic loci in asexual populations with special focus on cancer progression. Fitness can be defined as an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, restrictions in the order of accumulation of mutations, and order effects. Mutation rates can differ among genes, and can be affected by (anti)mutator genes.
View Article and Find Full Text PDFBackground: Cancer progression is caused by the sequential accumulation of mutations, but not all orders of accumulation are equally likely. When the fixation of some mutations depends on the presence of previous ones, identifying restrictions in the order of accumulation of mutations can lead to the discovery of therapeutic targets and diagnostic markers. The purpose of this study is to conduct a comprehensive comparison of the performance of all available methods to identify these restrictions from cross-sectional data.
View Article and Find Full Text PDFMammographic density (MD) is an intermediate phenotype for breast cancer. Previous studies have identified genetic variants associated with MD; however, much of the genetic contribution to MD is unexplained. We conducted a two-stage genome-wide association analysis among the participants in the "Determinants of Density in Mammographies in Spain" study, together with a replication analysis in women from the Australian MD Twins and Sisters Study.
View Article and Find Full Text PDFMotivation: Studies of genomic DNA copy number alteration can deal with datasets with several million probes and thousands of subjects. Analyzing these data with currently available software (e.g.
View Article and Find Full Text PDFPapillary Thyroid Cancer (PTC) is a heterogeneous and complex disease; susceptibility to PTC is influenced by the joint effects of multiple common, low-penetrance genes, although relatively few have been identified to date. Here we applied a rigorous combined approach to assess both the individual and epistatic contributions of genetic factors to PTC susceptibility, based on one of the largest series of thyroid cancer cases described to date. In addition to identifying the involvement of TSHR variation in classic PTC, our pioneer study of epistasis revealed a significant interaction between variants in STK17B and PAX8.
View Article and Find Full Text PDFIn this chapter, we review some recent methods designed for detecting recurrent copy number regions, that is, genomic regions that show evidence of being altered in a set of samples. We analyze Affymetrix SNP6 data from 87 Her2-type breast tumors from a recent study using three different methods, showing different definitions and features of common regions: studying heterogeneity in copy number profiles, refining candidates for driver oncogenes, and consolidating broad amplifications.
View Article and Find Full Text PDFHumoral response in cancer patients appears early in cancer progression and can be used for diagnosis, including early detection. By using human recombinant protein and T7 phage microarrays displaying colorectal cancer (CRC)-specific peptides, we previously selected 6 phages and 6 human recombinant proteins as tumor-associated antigens (TAAs) with high diagnostic value. After completing validation in biological samples, TAAs were classified according to their correlation, redundancy in reactivity patterns and multiplex diagnostic capabilities.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) prognostication requires additional biologic markers. miRNAs may constitute markers for cancer diagnosis, outcome, or therapy response. In the present study, we analyzed the miRNA expression profile in a retrospective multicenter series of 258 DLBCL patients uniformly treated with chemoimmunotherapy.
View Article and Find Full Text PDFBackground: Copy number variants (CNV) are a potentially important component of the genetic contribution to risk of common complex diseases. Analysis of the association between CNVs and disease requires that uncertainty in CNV copy-number calls, which can be substantial, be taken into account; failure to consider this uncertainty can lead to biased results. Therefore, there is a need to develop and use appropriate statistical tools.
View Article and Find Full Text PDFThe characterization of the humoral response in cancer patients is becoming a practical alternative to improve early detection. We prepared phage microarrays containing colorectal cancer cDNA libraries to identify phage-expressed peptides recognized by tumor-specific autoantibodies from patient sera. From a total of 1536 printed phages, 128 gave statistically significant values to discriminate cancer patients from control samples.
View Article and Find Full Text PDFwaviCGH is a versatile web server for the analysis and comparison of genomic copy number alterations in multiple samples from any species. waviCGH processes data generated by high density SNP-arrays, array-CGH or copy-number calls generated by any technique. waviCGH includes methods for pre-processing of the data, segmentation, calling of gains and losses, and minimal common regions determination over a set of experiments.
View Article and Find Full Text PDFBMC Bioinformatics
September 2009
Background: Alterations in the number of copies of genomic DNA that are common or recurrent among diseased individuals are likely to contain disease-critical genes. Unfortunately, defining common or recurrent copy number alteration (CNA) regions remains a challenge. Moreover, the heterogeneous nature of many diseases requires that we search for common or recurrent CNA regions that affect only some subsets of the samples (without knowledge of the regions and subsets affected), but this is neglected by most methods.
View Article and Find Full Text PDF