CD4 T helper antigens are essential components of cancer vaccines, but the relevance of the source of these MHC class II-restricted antigens remains underexplored. To compare the effectiveness of tumor-specific versus tumor-unrelated helper antigens, we designed three DNA vaccines for the murine MC-38 colon carcinoma, encoding CD8 T cell neoantigens alone (noHELP) or in combination with either "universal" helper antigens (uniHELP) or helper neoantigens (neoHELP). Both types of helped vaccines increased the frequency of vaccine-induced CD8 T cells, and particularly uniHELP increased the fraction of KLRG1 and PD-1 effector cells.
View Article and Find Full Text PDFCytomegalovirus (CMV) is one of the most common and relevant opportunistic pathogens in people who are immunocompromised, such as kidney transplant recipients (KTRs). The exact mechanisms underlying the disability of cytotoxic T cells to provide sufficient protection against CMV in people who are immunosuppressed have not been identified yet. Here, we performed in-depth metabolic profiling of CMV-specific CD8+ T cells in patients who are immunocompromised and show the development of metabolic dysregulation at the transcriptional, protein, and functional level of CMV-specific CD8+ T cells in KTRs with noncontrolled CMV infection.
View Article and Find Full Text PDFCD3 bispecific antibody (CD3 bsAb) therapy is clinically approved for refractory hematological malignancies, but responses in solid tumors have been limited so far. One of the main hurdles in solid tumors is the lack of sufficient T-cell infiltrate. Here, we show that pre-treatment vaccination, even when composed of tumor-unrelated antigens, induces CXCR3-mediated T-cell influx in immunologically 'cold' tumor models in male mice.
View Article and Find Full Text PDFBackground: The survival of patients with cervical cancer who are treated with cisplatin in conjunction with the topoisomerase I inhibitor topotecan is enhanced when compared with patients treated with only one of these chemotherapeutics. Moreover, cisplatin-based and T cell-based immunotherapy have been shown to synergize, resulting in stronger antitumor responses. Here, we interrogated whether topotecan could further enhance the synergy of cisplatin with T cell-based cancer immunotherapy.
View Article and Find Full Text PDFImmunophenotyping is a powerful approach for deciphering responses of the immune system to drug screening and immunotherapy. In this issue of Cell Report Methods, Liechti et al. have advanced this approach by developing a pipeline, which allows high-throughput but still accurate single-cell immunophenotyping in time.
View Article and Find Full Text PDFSARS-CoV-2 is the third zoonotic coronavirus to cause a major outbreak in humans in recent years, and many more SARS-like coronaviruses with pandemic potential are circulating in several animal species. Vaccines inducing T cell immunity against broadly conserved viral antigens may protect against hospitalization and death caused by outbreaks of such viruses. We report the design and preclinical testing of 2 T cell-based pan-sarbecovirus vaccines, based on conserved regions within viral proteins of sarbecovirus isolates of human and other carrier animals, like bats and pangolins.
View Article and Find Full Text PDFTherapeutic cancer vaccines trigger CD4 + and CD8 + T cell responses capable of established tumor eradication. Current platforms include DNA, mRNA and synthetic long peptide (SLP) vaccines, all aiming at robust T cell responses. SLPs linked to the Amplivant® adjuvant (Amplivant-SLP) have shown effective delivery to dendritic cells, resulting in improved immunogenicity in mice.
View Article and Find Full Text PDFImmune checkpoint therapy (ICT) has the power to eradicate cancer, but the mechanisms that determine effective therapy-induced immune responses are not fully understood. Here, using high-dimensional single-cell profiling, we interrogate whether the landscape of T cell states in the peripheral blood predict responses to combinatorial targeting of the OX40 costimulatory and PD-1 inhibitory pathways. Single-cell RNA sequencing and mass cytometry expose systemic and dynamic activation states of therapy-responsive CD4 and CD8 T cells in tumor-bearing mice with expression of distinct natural killer (NK) cell receptors, granzymes, and chemokines/chemokine receptors.
View Article and Find Full Text PDFThe development and differentiation of B cells is intimately linked to cell proliferation and the generation of diverse immunoglobulin gene () repertoires. The ubiquitin E3 ligase HUWE1 controls proliferation, DNA damage responses, and DNA repair, including the base excision repair (BER) pathway. These processes are of crucial importance for B-cell development in the bone marrow, and the germinal center (GC) response, which results in the clonal expansion and differentiation of B cells expressing high affinity immunoglobulins.
View Article and Find Full Text PDFT-cell dysregulation in chronic lymphocytic leukemia (CLL) associates with low response rates to autologous T cell-based therapies. How CLL affects antigen-specific T-cell responses remains largely unknown. We investigated (epi)genetic and functional consequences of antigen-specific T-cell responses in presence of CLL in vitro and in an adoptive-transfer murine model.
View Article and Find Full Text PDFThe PD-L1/2-PD-1 immune checkpoint is essential for the proper induction of peripheral tolerance and limits autoimmunity, whereas tumor cells exploit their expression to promote immune evasion. Many different cell types express PD-L1/2, either constitutively or upon stimulation, but the factors driving this expression are often poorly defined. In this study, using genome-wide CRISPR activation screening, we identified three factors that upregulate PD-L1 expression: GATA2, MBD6, and transcription cofactor vestigial-like protein 3 (VGLL3).
View Article and Find Full Text PDFUnderstanding the mechanisms and impact of booster vaccinations are essential in the design and delivery of vaccination programs. Here we show that a three dose regimen of a synthetic peptide vaccine elicits an accruing CD8 T cell response against one SARS-CoV-2 Spike epitope. We see protection against lethal SARS-CoV-2 infection in the K18-hACE2 transgenic mouse model in the absence of neutralizing antibodies, but two dose approaches are insufficient to confer protection.
View Article and Find Full Text PDFHow mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism, affects dendritic cell (DC) metabolism and T cell-priming capacity has primarily been investigated in vitro, but how mTORC1 regulates this in vivo remains poorly defined. Here, using mice deficient for mTORC1 component raptor in DCs, we find that loss of mTORC1 negatively affects glycolytic and fatty acid metabolism and maturation of conventional DCs, particularly cDC1s. Nonetheless, antigen-specific CD8 T cell responses to infection are not compromised and are even enhanced following skin immunization.
View Article and Find Full Text PDFPyroptosis is a recently discovered form of inflammatory programmed necrosis characterized by caspase-1-mediated and gasdermin D-dependent cell death leading to the release of pro-inflammatory cytokines such as Interleukin-1 beta (IL-1β). Here, we evaluated whether pyroptosis could be exploited in DNA vaccination by incorporating a constitutively active variant of caspase-1 to the antigen-expressing DNA. In vitro, transfection with constitutively active caspase-1 DNA induced pro-IL-1β maturation and IL-1β release as well as gasdermin D-dependent cell death.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is an ubiquitous herpesvirus that can cause serious morbidity and mortality in immunocompromised or immune-immature individuals. A vaccine that induces immunity to CMV in these target populations is therefore highly needed. Previous attempts to generate efficacious CMV vaccines primarily focused on the induction of humoral immunity by eliciting neutralizing antibodies.
View Article and Find Full Text PDFObjective: Pancreatic ductal adenocarcinoma (PDAC) has the characteristics of high-density desmoplastic stroma, a distinctive immunosuppressive microenvironment and is profoundly resistant to all forms of chemotherapy and immunotherapy, leading to a 5-year survival rate of 9%. Our study aims to add novel small molecule therapeutics for the treatment of PDAC.
Design: We have studied whether TAK-981, a novel highly selective and potent small molecule inhibitor of the small ubiquitin like modifier (SUMO) activating enzyme E1 could be used to treat a preclinical syngeneic PDAC mouse model and we have studied the mode of action of TAK-981.
Background: Expression of killer cell lectin-like receptor B1 (), the gene encoding the cell surface molecule CD161, is associated with favorable prognosis in many cancers. CD161 is expressed by several lymphocyte populations, but its role and regulation on tumor-specific CD4+ T cells is unknown.
Methods: We examined the clinical impact of CD4+CD161+ T cells in human papillomavirus (HPV)16+ oropharyngeal squamous cell carcinoma (OPSCC), analyzed their contribution in a cohort of therapeutically vaccinated patients and used HPV16-specific CD4+CD161+ tumor-infiltrating lymphocytes and T cell clones for in-depth mechanistic studies.
Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation.
View Article and Find Full Text PDFBackground: High serum interleukin (IL-6) levels may cause resistance to immunotherapy by modulation of myeloid cells in the tumor microenvironment. IL-6 signaling blockade is tested in cancer, but as this inflammatory cytokine has pleiotropic effects, this treatment is not always effective.
Methods: IL-6 and IL-6R blockade was applied in an IL-6-mediated immunotherapy-resistant TC-1 tumor model (TC-1.
Tissue-resident memory T (T) cells mediate potent local innate and adaptive immune responses and provide long-lasting protective immunity. T cells localize to many different tissues, including barrier tissues, and play a crucial role in protection against infectious and malignant disease. The formation and maintenance of T cells are influenced by numerous factors, including inflammation, antigen triggering, and tissue-specific cues.
View Article and Find Full Text PDFFactors that govern the complex formation of memory T cells are not completely understood. A better understanding of the development of memory T cell heterogeneity is however required to enhance vaccination and immunotherapy approaches. Here we examined the impact of pathogen- and tissue-specific cues on memory CD8 T cell heterogeneity using high-dimensional single-cell mass cytometry and a tailored bioinformatics pipeline.
View Article and Find Full Text PDFDifferentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B-cell fate remain unclear. Here, we identified a role for the histone H3K79 methyltransferase DOT1L in controlling B-cell differentiation. Mouse B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo.
View Article and Find Full Text PDFBackground: Adenoviral vectors emerged as important platforms for cancer immunotherapy. Vaccination with adenoviral vectors is promising in this respect, however, their specific mechanisms of action are not fully understood. Here, we assessed the development and maintenance of vaccine-induced tumor-specific CD8 T cells elicited upon immunization with adenoviral vectors.
View Article and Find Full Text PDF