The nanostructuring of silicon surfaces--known as black silicon--is a promising approach to eliminate front-surface reflection in photovoltaic devices without the need for a conventional antireflection coating. This might lead to both an increase in efficiency and a reduction in the manufacturing costs of solar cells. However, all previous attempts to integrate black silicon into solar cells have resulted in cell efficiencies well below 20% due to the increased charge carrier recombination at the nanostructured surface.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2013
The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers.
View Article and Find Full Text PDFIn this Letter we report on the thermal properties of macroporous silicon photonic crystals with the unit cell gradually varied along the pore axis. We show experimentally that arbitrarily large omnidirectional total-reflectance bands can be produced with such structures. We also demonstrate that those bands can be effectively used to reduce thermal radiation in large spectral bands.
View Article and Find Full Text PDFThe electrophysiological characterisation of cultured neurons is of paramount importance for drug discovery, safety pharmacology and basic research in the neurosciences. Technologies offering low cost, low technical complexity and potential for scalability towards high-throughput electrophysiology on in vitro neurons would be advantageous, in particular for screening purposes. Here we describe a plastic culture substrate supporting low-complexity multi-unit loose-patch recording and stimulation of developing networks while retaining manufacturability compatible with low-cost and large-scale production.
View Article and Find Full Text PDFWe report the sub-wavelength patterning of the optical near-field by total internal reflection illumination of a regular array of resonant gold nano-particles. Under appropriate conditions, the in-plane coupling between Localized Surface Plasmon (LSP) fields gives rise to sub-wavelength light spots between the structures. Measurements performed with an Apertureless Scanning Near-Field Optical Microscope (ASNOM) show a good agreement with theoretical predictions based on the Green dyadic method.
View Article and Find Full Text PDF