Publications by authors named "Ramocki M"

Background: MECP2 Duplication Syndrome, also known as X-linked intellectual developmental disorder Lubs type (MRXSL; MIM: 300260), is a neurodevelopmental disorder caused by copy number gains spanning MECP2. Despite varying genomic rearrangement structures, including duplications and triplications, and a wide range of duplication sizes, no clear correlation exists between DNA rearrangement and clinical features. We had previously demonstrated that up to 38% of MRXSL families are characterized by complex genomic rearrangements (CGRs) of intermediate complexity (2 ≤ copy number variant breakpoints < 5), yet the impact of these genomic structures on regulation of gene expression and phenotypic manifestations have not been investigated.

View Article and Find Full Text PDF

Chromosome 16p11.2 deletions and duplications are among the most frequent genetic etiologies of autism spectrum disorder (ASD) and other neurodevelopmental disorders, but detailed descriptions of their neurologic phenotypes have not yet been completed. We utilized standardized examination and history methods to characterize a neurologic phenotype in 136 carriers of 16p11.

View Article and Find Full Text PDF

Increased dosage of methyl-CpG-binding protein-2 (MeCP2) results in a dramatic neurodevelopmental phenotype with onset at birth. We generated induced pluripotent stem cells (iPSCs) from patients with the MECP2 duplication syndrome (MECP2dup), carrying different duplication sizes, to study the impact of increased MeCP2 dosage in human neurons. We show that cortical neurons derived from these different MECP2dup iPSC lines have increased synaptogenesis and dendritic complexity.

View Article and Find Full Text PDF

Purpose: To characterize the clinical phenotype of the recurrent copy-number variation (CNV) at 1q21.1, we assessed the psychiatric and medical phenotypes of 1q21.1 deletion and duplication carriers ascertained through clinical genetic testing and family member cascade testing, with particular emphasis on dimensional assessment across multiple functional domains.

View Article and Find Full Text PDF

The 17p13.1 microdeletion syndrome is a recently described genomic disorder with a core clinical phenotype of intellectual disability, poor to absent speech, dysmorphic features, and a constellation of more variable clinical features, most prominently microcephaly. We identified five subjects with copy-number variants (CNVs) on 17p13.

View Article and Find Full Text PDF

Curation and interpretation of copy number variants identified by genome-wide testing is challenged by the large number of events harbored in each personal genome. Conventional determination of phenotypic relevance relies on patterns of higher frequency in affected individuals versus controls; however, an increasing amount of ascertained variation is rare or private to clans. Consequently, frequency data have less utility to resolve pathogenic from benign.

View Article and Find Full Text PDF

We investigated 67 breakpoint junctions of gene copy number gains in 31 unrelated subjects. We observed a strikingly high frequency of small deletions and insertions (29%) apparently originating from polymerase slippage events, in addition to frameshifts and point mutations in homonucleotide runs (13%), at or flanking the breakpoint junctions of complex copy number variants. These single-nucleotide variants were generated concomitantly with the de novo complex genomic rearrangement (CGR) event.

View Article and Find Full Text PDF

White matter hyperintensities (WMHs) of the brain are important markers of aging and small-vessel disease. WMHs are rare in healthy children and, when observed, often occur with comorbid neuroinflammatory or vasculitic processes. Here, we describe a complex 4 kb deletion in 2q36.

View Article and Find Full Text PDF

The aim of this study was to determine the frequency, timing, and associated features of developmental regression in MECP2 duplication syndrome. We also examined whether duplication size was associated with regression. Comprehensive psychological evaluations were used to assess 17 boys with MECP2 duplication syndrome.

View Article and Find Full Text PDF

The DNA binding protein methyl-CpG binding protein 2 (MeCP2) critically influences neuronal and brain function by modulating gene expression, and children with overexpression of the MECP2 gene exhibit postnatal neurological syndromes. We demonstrate that some children with MECP2 duplication also display variable immunological abnormalities that include reductions in memory T and B cells and natural killer cells and immunoglobulin assay responses. Moreover, whereas mice with MeCP2 overexpression were unable to control infection with the intra-macrophage parasite Leishmania major and secrete interferon-γ (IFN-γ) from involved lymph nodes, they were able to control airway fungal infection by Aspergillus niger and mount protective T helper cell type 2 (T(H)2)-dependent allergic responses.

View Article and Find Full Text PDF

Alterations in the X-linked gene MECP2 encoding the methyl-CpG-binding protein 2 have been linked to autism spectrum disorders (ASDs). Most recently, data suggest that overexpression of MECP2 may be related to ASD. To better characterize the relevance of MECP2 overexpression to ASD-related behaviors, we compared the core symptoms of ASD in MECP2 duplication syndrome to nonverbal mental age-matched boys with idiopathic ASD.

View Article and Find Full Text PDF

Background: The recurrent ~600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders.

Objective: To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion.

View Article and Find Full Text PDF

Background: Duplications of the X-linked MECP2 gene are associated with moderate to severe intellectual disability, epilepsy, and neuropsychiatric illness in males, while triplications are associated with a more severe phenotype. Most carrier females show complete skewing of X-inactivation in peripheral blood and an apparent susceptibility to specific personality traits or neuropsychiatric symptoms.

Methods: We describe the clinical phenotype of a pedigree segregating a duplication of MECP2 found on clinical array comparative genomic hybridization.

View Article and Find Full Text PDF
Article Synopsis
  • - The study found complex genomic rearrangements involving duplications and triplications at the MECP2 and PLP1 gene locations in 11 unrelated individuals.
  • - These rearrangements feature a unique structure where a triplicated segment is inverted and placed between two duplicated segments, identified as DUP-TRP/INV-DUP.
  • - The researchers suggest that such complex genetic variations are likely caused by inverted repeats within the genome and propose mechanisms combining homologous and nonhomologous DNA processes.
View Article and Find Full Text PDF

Polymicrogyria is a disorder of neuronal development resulting in structurally abnormal cerebral hemispheres characterized by over-folding and abnormal lamination of the cerebral cortex. Polymicrogyria is frequently associated with severe neurologic deficits including intellectual disability, motor problems, and epilepsy. There are acquired and genetic causes of polymicrogyria, but most patients with a presumed genetic etiology lack a specific diagnosis.

View Article and Find Full Text PDF

Rhombencephalosynapsis (RES) is a rare congenital brain malformation typically identified by magnetic resonance imaging and characterized by fusion of the cerebellar hemispheres and dentate nuclei and vermian agenesis or hypogenesis. Although RES is frequently found in conjunction with other brain malformations and/or congenital anomalies, no specific molecular etiology has been discovered to date and no animal models exist. We identified two half sisters with alobar or semi-lobar holoprosencephaly (HPE) and partial RES, suggesting that genes linked to HPE may also contribute to RES.

View Article and Find Full Text PDF

To date, over 70 mutations in the TGFBR2 gene have been reported in patients with Loeys-Dietz syndrome (LDS), Marfan syndrome type 2 (MFS2), or other hereditary thoracic aortic aneurysms and dissections. Whereas almost all of mutations analyzed thus far are predicted to disrupt the constitutively active C-terminal serine/threonine kinase domain of TGFBR2, mounting evidence suggests that the molecular mechanism underlying these diseases is more complex than simple haploinsufficiency. Using exon-targeted oligonucleotide array comparative genomic hybridization, we identified an ∼896 kb deletion of TGFBR2 in a 20-month-old female with microcephaly and global developmental delay, but no stigmata of LDS.

View Article and Find Full Text PDF
Article Synopsis
  • A 26-week-old fetus was diagnosed in utero with complete bilateral cerebellar infarction using routine prenatal ultrasound and MRI.
  • This condition is associated with posterior fossa ischemic stroke, linked to a thrombosis in the vertebrobasilar artery, which led to temporary obstructive hydrocephalus.
  • Cases like this are uncommon, and the report discusses the imaging results and potential impacts on the fetus's clinical and developmental future.
View Article and Find Full Text PDF

Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2.

View Article and Find Full Text PDF

We report 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of epilepsy, learning difficulties, intellectual disabilities, and/or neurobehavioral abnormalities as a result of a heterozygous microdeletion distally adjacent to the Williams-Beuren syndrome region on chromosome 7q11.23. In six families with a common recurrent ∼1.

View Article and Find Full Text PDF

In this review, we detail the history, molecular diagnosis, epidemiology, and clinical features of the MECP2 duplication syndrome, including considerations for the care of patients with this X-linked neurodevelopmental disorder. MECP2 duplication syndrome is 100% penetrant in affected males and is associated with infantile hypotonia, severe to profound mental retardation, autism or autistic features, poor speech development, recurrent infections, epilepsy, progressive spasticity, and, in some cases, developmental regression. Most of the reported cases are inherited, however, de novo cases have been documented.

View Article and Find Full Text PDF

Acute chemotherapy-related leukoencephalopathy can present similar to acute stroke with symptoms including aphasia, dysarthria, and hemiplegia. Differentiation based on clinical appearance is challenging, and physicians must distinguish between the 2 conditions rapidly to institute appropriate therapies. An 8-year-old male with acute lymphoblastic leukemia receiving chemotherapy, including intrathecal methotrexate, presented to our emergency center with 2 hours of expressive aphasia and flaccid right hemiplegia.

View Article and Find Full Text PDF

Objective: There have been no objective assessments to determine whether boys with MECP2 duplication have autism or whether female carriers manifest phenotypes. This study characterizes the clinical and neuropsychiatric phenotypes of affected boys and carrier females.

Methods: Eight families (9 males and 9 females) with MECP2 duplication participated.

View Article and Find Full Text PDF

Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay.

View Article and Find Full Text PDF