IEEE Trans Biomed Eng
September 2017
Objective: The purpose of this paper is to describe a semiautomated segmentation method for the liver and evaluate its performance on CT-scan and MR images.
Methods: First, an approximate 3-D model of the liver is initialized from a few user-generated contours to globally outline the liver shape. The model is then automatically deformed by a Laplacian mesh optimization scheme until it precisely delineates the patient's liver.
The objective of this pilot study was to investigate central nervous system (CNS) changes related to osteoarthritis (OA)-associated chronic pain in cats using [(18)F]-fluorodeoxyglucose ((18)FDG) positron emission tomography (PET) imaging. The brains of five normal, healthy (non-OA) cats and seven cats with pain associated with naturally occurring OA were imaged using (18)FDG-PET during a standardized mild anesthesia protocol. The PET images were co-registered over a magnetic resonance image of a cat brain segmented into several regions of interest.
View Article and Find Full Text PDFThis paper presents a new method for guidewire tracking on fluoroscopic images from endovascular brain intervention. The combination of algorithms chosen can be implemented in real time, so that it can be used in an augmented reality 3D representation to assist physicians performing these interventions. A ribbon-like morphing process combined with a minimal path optimization algorithm is used to track lateral motion between successive frames.
View Article and Find Full Text PDF