Background: Sleep deficiencies, such as manifested in short sleep duration or insomnia symptoms, are known to increase the risk for multiple disease conditions involving immunopathology. Inflammation is hypothesized to be a mechanism through which deficient sleep acts as a risk factor for these conditions. Thus, one potential way to mitigate negative health consequences associated with deficient sleep is to target inflammation.
View Article and Find Full Text PDFStudy Objective: To evaluate how nocturnal timing of sleep restriction affects vigilant attention and mood in healthy controls with normal sleep-wake patterns.
Methods: A convenience sample from two controlled sleep restriction protocols were used to investigate the difference between 4 hours of sleep early in the night, versus 4 hours late in the night. Volunteers stayed in a hospital setting and were randomized to one of the three conditions: a control (8 hours of sleep each night), an early short sleep (ESS, 2300-0300 hours), and a late short sleep (LSS, 0300-0700 hours).
Study Objectives: There is strong evidence that sleep disturbances are an independent risk factor for the development of chronic pain conditions. The mechanisms underlying this association, however, are still not well understood. We examined the effect of experimental sleep disturbances (ESDs) on three pathways involved in pain initiation/resolution: (1) the central pain-inhibitory pathway, (2) the cyclooxygenase (COX) pathway, and (3) the endocannabinoid (eCB) pathway.
View Article and Find Full Text PDFSleep disturbances, including disrupted sleep and short sleep duration, are highly prevalent and are prospectively associated with an increased risk for various widespread diseases, including cardiometabolic, neurodegenerative, chronic pain, and autoimmune diseases. Systemic inflammation, which has been observed in populations experiencing sleep disturbances, may mechanistically link disturbed sleep with increased disease risks. To determine whether sleep disturbances are causally responsible for the inflammatory changes reported in population-based studies, we developed a 19-day in-hospital experimental model of prolonged sleep disturbance inducing disrupted and shortened sleep.
View Article and Find Full Text PDFWhile it is well established that slow-wave sleep electroencephalography (EEG) rebounds following sleep deprivation, very little research has investigated autonomic nervous system recovery. We examined heart rate variability (HRV) and cardiovagal baroreflex sensitivity (BRS) during four blocks of repetitive sleep restriction and sequential nights of recovery sleep. Twenty-one healthy participants completed the 22-day in-hospital protocol.
View Article and Find Full Text PDF