Brain tumor segmentation from Magnetic Resonance Images (MRI) is considered a big challenge due to the complexity of brain tumor tissues, and segmenting these tissues from the healthy tissues is an even more tedious challenge when manual segmentation is undertaken by radiologists. In this paper, we have presented an experimental approach to emphasize the impact and effectiveness of deep learning elements like optimizers and loss functions towards a deep learning optimal solution for brain tumor segmentation. We evaluated our performance results on the most popular brain tumor datasets (MICCAI BraTS 2020 and RSNA-ASNR-MICCAI BraTS 2021).
View Article and Find Full Text PDFBrain tumor segmentation from MRIs has always been a challenging task for radiologists, therefore, an automatic and generalized system to address this task is needed. Among all other deep learning techniques used in medical imaging, U-Net-based variants are the most used models found in the literature to segment medical images with respect to different modalities. Therefore, the goal of this paper is to examine the numerous advancements and innovations in the U-Net architecture, as well as recent trends, with the aim of highlighting the ongoing potential of U-Net being used to better the performance of brain tumor segmentation.
View Article and Find Full Text PDFMedical images are a rich source of invaluable necessary information used by clinicians. Recent technologies have introduced many advancements for exploiting the most of this information and use it to generate better analysis. Deep learning (DL) techniques have been empowered in medical images analysis using computer-assisted imaging contexts and presenting a lot of solutions and improvements while analyzing these images by radiologists and other specialists.
View Article and Find Full Text PDF