Publications by authors named "Ramm G"

High-resolution cryo-electron microscopy (cryo-EM) requires costly 200- to 300-keV cryo-transmission electron microscopes (cryo-TEMs) with field emission gun (FEG) sources, stable columns, constant-powered lenses, autoloader, and direct electron detectors (DED). Recent advances in 100-keV imaging with the emergence of sub-200-keV optimized DED technology promises the development of more affordable cryo-TEMs. So far, 100-keV imaging has required microscopes with FEG sources.

View Article and Find Full Text PDF

Primarily perceived as an anti-inflammatory and antimicrobial mediator in mucosa and skin, interleukin-22 (IL-22) has emerged as a pivotal metabolic regulator. Central to IL-22 signaling is its receptor, IL-22RA1. Through IL-22RA1, IL-22 orchestrates glucose homeostasis by modulating insulin secretion, reducing cellular stress in pancreatic islets, promoting beta-cell regeneration, and influencing hepatic glucose and lipid metabolism.

View Article and Find Full Text PDF

A poor maternal diet during pregnancy predisposes the infant to severe lower respiratory tract infections (sLRIs), which, in turn, increases childhood asthma risk; however, the underlying mechanisms remain poorly understood. Here, we show that the offspring of high-fat diet (HFD)-fed mothers (HFD-reared pups) developed an sLRI following pneumovirus inoculation in early life and subsequent asthma in later life upon allergen exposure. Prior to infection, HFD-reared pups developed microbial dysbiosis and low-grade systemic inflammation (LGSI), characterized by hyperneutropoiesis in the liver and elevated inflammatory cytokine expression, most notably granulocyte-colony stimulating factor (G-CSF), interleukin-17A (IL-17A), IL-6 and soluble IL-6 receptor (sIL-6R) (indicative of IL-6 trans-signaling) in the circulation and multiple organs but most prominently the liver.

View Article and Find Full Text PDF
Article Synopsis
  • Rigid spine syndrome is a rare condition in children marked by progressive scoliosis, neck and spine stiffness, muscle weakness, and breathing issues, primarily linked to genetic variations in the SELENON gene.
  • Recent research identified additional genetic variants in the HMGCS1 gene in five patients, suggesting it plays a role in this syndrome, despite it not being previously linked to any diseases.
  • Functional studies of the HMGCS1 variants showed altered protein stability and activity, and experiments in zebrafish indicated that these mutations severely impact development, but can be rescued by introducing healthy HMGCS1 mRNA.
View Article and Find Full Text PDF

Analyses of mitochondrial adaptations in human skeletal muscle have mostly used whole-muscle samples, where results may be confounded by the presence of a mixture of type I and II muscle fibres. Using our adapted mass spectrometry-based proteomics workflow, we provide insights into fibre-specific mitochondrial differences in the human skeletal muscle of men before and after training. Our findings challenge previous conclusions regarding the extent of fibre-type-specific remodelling of the mitochondrial proteome and suggest that most baseline differences in mitochondrial protein abundances between fibre types reported by us, and others, might be due to differences in total mitochondrial content or a consequence of adaptations to habitual physical activity (or inactivity).

View Article and Find Full Text PDF

Background And Aims: Hemostatic iron regulator-hemochromatosis can result in progressive iron-loading and advanced hepatic fibrosis in some individuals. We studied total body and hepatic iron loading to determine whether the distribution of iron-loading influences the risk of advanced fibrosis.

Methods: One hundred thirty-eight men and 66 women with hemochromatosis who underwent liver biopsy for staging of hepatic fibrosis had evaluation of hepatic iron concentration (HIC), hepatic iron index (HIC/age), total body iron stores (mobilizable iron), and mobilizable iron/HIC ratio (a marker of total body iron relative to hepatic iron).

View Article and Find Full Text PDF
Article Synopsis
  • The IL-22RA1 receptor is important in the pancreas and helps improve insulin secretion from beta-cells while reducing cellular stress.
  • Blocking IL-22RA1 in human pancreatic islets results in lower insulin quality and increased cellular stress, indicating its crucial role in insulin regulation.
  • Experiments in mice lacking IL-22ra1 in beta-cells showed similar negative effects on insulin secretion, increased inflammation, and worsened glucose tolerance, especially in females, highlighting the receptor's significance in metabolic health.
View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) is the most prevalent cause of liver disease worldwide, with a single approved therapeutic. Previous research has shown that interleukin-22 (IL-22) can suppress β-cell stress, reduce local islet inflammation, restore appropriate insulin production, reverse hyperglycemia, and ameliorate insulin resistance in preclinical models of diabetes. In clinical trials long-acting forms of IL-22 have led to increased proliferation in the skin and intestine, where the IL-22RA1 receptor is highly expressed.

View Article and Find Full Text PDF
Article Synopsis
  • - Mutations in the DNAJB6 gene are linked to limb girdle muscular dystrophy type D1 (LGMD D1), a condition that results in progressive muscle weakness and specific muscle damage characteristics.
  • - Researchers created a zebrafish model with a loss of Dnajb6 to study its effects, discovering that the absence of this gene leads to late-onset muscle weakness without major autophagy or myofibril issues, but with noticeable mitochondrial damage.
  • - This study highlights the connection between DNAJB6 loss and mitochondrial defects in muscle, offering insights into LGMD D1 and a potential platform for testing new treatments.
View Article and Find Full Text PDF

In this work, we present a pair of tools to improve the fiducial tracking and reconstruction quality of cryo-scanning transmission electron tomography (STET) datasets. We then demonstrate the effectiveness of these two tools on experimental cryo-STET data. The first tool, GoldDigger, improves the tracking of fiducials in cryo-STET by accommodating the changed appearance of highly defocussed fiducial markers.

View Article and Find Full Text PDF

Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1β (IL-1β) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule-1 (ICAM-1).

View Article and Find Full Text PDF

During apoptosis mediated by the intrinsic pathway, BAX/BAK triggers mitochondrial permeabilization and the release of cytochrome-c, followed by a dramatic remodelling of the mitochondrial network that results in mitochondrial herniation and the subsequent release of pro-inflammatory mitochondrial components. Here, we show that mitochondrial herniation and subsequent exposure of the inner mitochondrial membrane (IMM) to the cytoplasm, initiates a unique form of mitophagy to deliver these damaged organelles to lysosomes. IMM-induced mitophagy occurs independently of canonical PINK1/Parkin signalling and is driven by ubiquitination of the IMM.

View Article and Find Full Text PDF

Since its inception in the 1930s, transmission electron microscopy (TEM) has been a powerful method to explore the cellular structure of parasites. TEM usually requires samples of <100 nm thick and with protozoans being larger than 1 μm, their study requires resin embedding and ultrathin sectioning. During the past decade, several new methods have been developed to improve, facilitate, and speed up the structural characterisation of biological samples, offering new imaging modalities for the study of protozoans.

View Article and Find Full Text PDF

Organ size is controlled by numerous factors including mechanical forces, which are mediated in part by the Hippo pathway. In growing Drosophila epithelial tissues, cytoskeletal tension influences Hippo signaling by modulating the localization of key pathway proteins to different apical domains. Here, we discovered a Hippo signaling hub at basal spot junctions, which form at the basal-most point of the lateral membranes and resemble adherens junctions in protein composition.

View Article and Find Full Text PDF

are a genus of insect endosymbiotic bacteria which includes strains Mel and AlbB that are being utilized as a biocontrol tool to reduce the incidence of -transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these strains are not well defined. Here, we generated a panel of -derived cell lines infected with antiviral strains Mel and AlbB or the non-antiviral strain Pip to understand host cell morphological changes specifically induced by antiviral strains.

View Article and Find Full Text PDF

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease.

View Article and Find Full Text PDF

The sexually transmitted pathogen Neisseria gonorrhoeae releases membrane vesicles including outer membrane vesicles (OMVs) during infections. OMVs traffic outer membrane molecules, such as the porin PorB and lipo-oligosaccharide (LOS), into host innate immune cells, eliciting programmed cell death pathways, and inflammation. Little is known, however, about the proteome and LOS content of OMVs released by clinical strains isolated from different infection sites, and whether these vesicles similarly activate immune responses.

View Article and Find Full Text PDF

Variants in have been reported to cause neurological disease with impaired motor function, developmental delay, intellectual disability and brain pathology as recurrent clinical manifestations. encodes a ubiquitin-activating-like enzyme that activates ufmylation, a post-translational ubiquitin-like modification pathway, which has been implicated in neurodevelopment and neuronal survival. The reason behind the variation in severity and clinical manifestations in affected individuals and the signal transduction pathways regulated by ufmylation that compromise the nervous system remains unknown.

View Article and Find Full Text PDF

Nanoparticle-based drug delivery systems (DDS) have shown promising results in reversing hepatic fibrosis, a common pathological basis of chronic liver diseases (CLDs), in preclinical animal models. However, none of these nanoparticle formulations has transitioned to clinical usage and there are currently no FDA-approved drugs available for liver fibrosis. This highlights the need for a better understanding of the challenges faced by nanoparticles in this complex disease setting.

View Article and Find Full Text PDF

Objective: The endothelial surface layer (ESL), a layer of macromolecules on the surface of endothelial cells, can both impede and facilitate leukocyte recruitment. However, its role in monocyte and neutrophil recruitment in glomerular capillaries is unknown.

Methods: We used multiphoton intravital microscopy to examine monocyte and neutrophil behavior in the glomerulus following ESL disruption with hyaluronidase.

View Article and Find Full Text PDF

Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state.

View Article and Find Full Text PDF

Advanced hepatic fibrosis occurs in up to 25% of individuals with C282Y homozygous hemochromatosis. Our aim was to determine whether human leukocyte antigen (HLA)-A3 and B7 alleles act as genetic modifiers of the likelihood of advanced hepatic fibrosis. Between 1972 and 2013, 133 HFE C282Y homozygous individuals underwent clinical and biochemical evaluation, HLA typing, liver biopsy for fibrosis staging and phlebotomy treatment.

View Article and Find Full Text PDF

Background And Aims: Early identification of risk factors for the development of severe fibrosis in children with cystic fibrosis-related liver disease (CFLD) is crucial as promising therapies emerge.

Methods: This multi-center cohort study of children with a priori defined CFLD from 1999 to 2016, was designed to evaluate the clinical utility of CF-specific characteristics and liver biomarkers assessed years prior to liver biopsy-proven CFLD to predict risk of developing severe fibrosis (F3-4) over time. Fibrosis was staged by Metavir classification.

View Article and Find Full Text PDF