Small cell lung cancer (SCLC) is a highly aggressive form of lung cancer with limited treatment options. Patients often respond well to initial chemo-immunotherapy but relapse quickly, necessitating new strategies to enhance immune responsiveness. Recent research explores combining DNA-damaging therapies with immunotherapy to activate the STING pathway and improve the antitumor immune response.
View Article and Find Full Text PDFBackground: Aside from the canonical role of PDL1 as a tumour surface-expressed immune checkpoint molecule, tumour-intrinsic PDL1 signals regulate non-canonical immunopathological pathways mediating treatment resistance whose significance, mechanisms, and therapeutic targeting remain incompletely understood. Recent reports implicate tumour-intrinsic PDL1 signals in the DNA damage response (DDR), including promoting homologous recombination DNA damage repair and mRNA stability of DDR proteins, but many mechanistic details remain undefined.
Methods: We genetically depleted PDL1 from transplantable mouse and human cancer cell lines to understand consequences of tumour-intrinsic PDL1 signals in the DNA damage response.
Purpose: Large cell neuroendocrine carcinoma (LCNEC) is a high-grade neuroendocrine malignancy that, like small cell lung cancer (SCLC), is associated with the absence of druggable oncogenic drivers and dismal prognosis. In contrast to SCLC, however, there is little evidence to guide optimal treatment strategies, which are often adapted from SCLC and non-small cell lung cancer approaches.
Experimental Design: To better define the biology of LCNEC, we analyzed cell line and patient genomic data and performed IHC and single-cell RNA sequencing of core needle biopsies from patients with LCNEC and preclinical models.
Purpose: Therapeutic resistance to frontline therapy develops rapidly in small cell lung cancer (SCLC). Treatment options are also limited by the lack of targetable driver mutations. Therefore, there is an unmet need for developing better therapeutic strategies and biomarkers of response.
View Article and Find Full Text PDFBackground: Despite the recent progress in the treatment and outcome of Non Small Cell Lung Cancer (NSCLC), immunotherapy has still significant limitations reporting a significant proportion of patients not benefiting from therapy, even in patients with high PD-L1 expression. We have previously demonstrated that the combined inhibition of MEK and PD-L1 in NSCLC patients derived three dimensional cultures exerted significant synergistic effect in terms of immune-dependent cancer cell death. However, subsequent experiments analyzing the expression of Indoleamine 2,3-dioxygenase-1 (Ido-1) gene expression demonstrated that Ido-1 resulted unaffected by the MEK inhibition and even increased after the combined inhibition of MEK and PD-L1 thus representing a potential escape mechanism to this combination.
View Article and Find Full Text PDFBackground: We recently conducted Cetuximab-AVElumab-Lung (CAVE-Lung), a proof-of-concept, translational and clinical trial, to evaluate the combination of two IgG1 monoclonal antibodies (mAb): avelumab, an anti-PD-L1 drug, and cetuximab, an anti-epidermal growth factor receptor (EGFR) drug, as second- or third-line treatment in non-small cell lung cancer (NSCLC) patients. We have reported clinically relevant anti-tumor activity in 6/16 patients. Clinical benefit was accompanied by Natural Killer (NK) cell-mediated antibody-dependent cell cytotoxicity (ADCC).
View Article and Find Full Text PDFBackground: Lurbinectedin recently received FDA accelerated approval as a second line treatment option for metastatic small cell lung cancer (SCLC). However, there are currently no established biomarkers to predict SCLC sensitivity or resistance to lurbinectedin or preclinical studies to guide rational combinations.
Methods: Drug sensitivity was assayed in proliferation assays and xenograft models.
Introduction: The transcription factor MYC is overexpressed in 30% of small cell lung cancer (SCLC) tumors and is known to modulate the balance between two major pathways of metabolism: glycolysis and mitochondrial respiration. This duality of MYC underscores the importance of further investigation into its role in SCLC metabolism and could lead to insights into metabolic targeting approaches.
Methods: We investigated differences in metabolic pathways in transcriptional and metabolomics datasets based on cMYC expression in patient and cell line samples.
DNA-damaging agents exploit increased genomic instability, a hallmark of cancer. Recently, inhibitors targeting the DNA damage response (DDR) pathways, such as PARP inhibitors, have also shown promising therapeutic potential. However, not all tumors respond well to these treatments, suggesting additional determinants of response are required.
View Article and Find Full Text PDFIntroduction: Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters host cells through the cell surface proteins ACE2 and TMPRSS2.
Methods: Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2.
Results: We find that ACE2 expression is restricted to a select population of epithelial cells.
GRP78 (glucose-regulated protein, 78 kDa) is a key regulator of endoplasmic reticulum (ER) stress signaling. Cancer cells are highly proliferative and have high demand for protein synthesis and folding, which results in significant stress on the ER. To respond to ER stress and maintain cellular homeostasis, cells activate the unfolded protein response (UPR) that promotes either survival or apoptotic death.
View Article and Find Full Text PDFDespite molecular and clinical heterogeneity, small cell lung cancer (SCLC) is treated as a single entity with predictably poor results. Using tumor expression data and non-negative matrix factorization, we identify four SCLC subtypes defined largely by differential expression of transcription factors ASCL1, NEUROD1, and POU2F3 or low expression of all three transcription factor signatures accompanied by an Inflamed gene signature (SCLC-A, N, P, and I, respectively). SCLC-I experiences the greatest benefit from the addition of immunotherapy to chemotherapy, while the other subtypes each have distinct vulnerabilities, including to inhibitors of PARP, Aurora kinases, or BCL-2.
View Article and Find Full Text PDFAXL, a TAM (TYRO3, AXL, and MERTK) family receptor tyrosine kinase, is increasingly being recognized as a key determinant of resistance to targeted therapies, as well as chemotherapy and radiation in non-small cell lung cancer (NSCLC) and other cancers. We further show here that high levels of and epithelial-to-mesenchymal transition were frequently expressed in subsets of both treatment-naïve and treatment-relapsed NSCLC. Previously, we and others have demonstrated a role for AXL in mediating DNA damage response (DDR), as well as resistance to inhibition of WEE1, a replication stress response kinase.
View Article and Find Full Text PDFIntroduction: Although the combination of anti-programmed cell death-1 or anti-programmed cell death ligand-1 (PD-L1) with platinum chemotherapy is a standard of care for NSCLC, clinical responses vary. Even though predictive biomarkers (which include PD-L1 expression, tumor mutational burden, and inflamed immune microenvironment) are validated for immunotherapy, their relevance to chemoimmunotherapy combinations is less clear. We have recently reported that activation of the stimulator of interferon genes (STING) innate immune pathway enhances immunotherapy response in SCLC.
View Article and Find Full Text PDFIntroduction: Despite the enthusiasm surrounding cancer immunotherapy, most SCLC patients show very modest response to immune checkpoint inhibitor monotherapy treatment. Therefore, there is growing interest in combining immune checkpoint blockade with chemotherapy and other treatments to enhance immune checkpoint blockade efficacy. Based on favorable clinical trial results, chemotherapy and immunotherapy combinations have been recently approved by the U.
View Article and Find Full Text PDFGlutathione S-transferase omega 1 (GSTO1) is an atypical GST isoform that is overexpressed in several cancers and has been implicated in drug resistance. Currently, no small-molecule drug targeting GSTO1 is under clinical development. Here we show that silencing of GSTO1 with siRNA significantly impairs cancer cell viability, validating GSTO1 as a potential new target in oncology.
View Article and Find Full Text PDFFibroblast growth factor receptor 1 (FGFR1) a tyrosine kinase receptor, plays important roles in angiogenesis, embryonic development, cell proliferation, cell differentiation, and wound healing. The FGFR isoforms and their receptors (FGFRs) considered as a potential targets and under intense research to design potential anticancer agents. Fibroblast growth factors (FGF's) and its growth factor receptors (FGFR) plays vital role in one of the critical pathway in monitoring angiogenesis.
View Article and Find Full Text PDFIntroduction: The antiretroviral treatment paradigm for human immunodeficiency virus-1 (HIV-1) infection has undergone a significant change with the addition of a new class of therapeutic agents targeting HIV-1 integrase (IN). IN inhibitors prevent the integration of viral DNA into the human genome and terminate the viral life cycle. As the first member of this new class of anti-HIV drugs, raltegravir has shown promising results in the clinic.
View Article and Find Full Text PDFRaltegravir was the first HIV-1 integrase inhibitor that gained FDA approval for use in the treatment of HIV-1 infection. Because of the emergence of IN inhibitor-resistant viral strains, there is a need to identify innovative second-generation IN inhibitors. Previously, we identified 2-thioxo-4-thiazolidinone (rhodanine)-containing compounds as IN inhibitors.
View Article and Find Full Text PDFIn recent years, HIV-1 integrase (IN) has become an attractive target for designing antiretroviral agents. The first IN inhibitor approved for clinical use, raltegravir, has validated the pharmacological viability of IN inhibitors and signals the advent of a new generation of antiretroviral drugs. The development of raltegravir and other successful lead IN inhibitors has also influenced the IN inhibitor design strategy.
View Article and Find Full Text PDFMerck's MK-0518, known as raltegravir, has recently become the first FDA-approved HIV-1 integrase (IN) inhibitor and has since risen to blockbuster drug status. Much research has in turn been conducted over the last few years aimed at recreating but optimizing the compound's interactions with the protein. Resulting me-too drugs have shown favorable pharmacokinetic properties and appear drug-like but, as expected, most have a highly similar interaction with IN to that of raltegravir.
View Article and Find Full Text PDFHIV-1 integrase (IN) has emerged as an important therapeutic target for anti-HIV drug development. Its uniqueness to the virus and its critical role in the viral life cycle makes IN suitable for selective inhibition. The recent approval of Raltegravir (MK-0518) has created a surge in interest and great optimism in the field.
View Article and Find Full Text PDFBackground: There is considerable research evidence supporting a palliative role for gamma-aminobutyric acid (GABA)-ergic neurotransmission and voltage-gated sodium channel blockade in neuropathic pain conditions. Hence, the present study was undertaken to assess the peripheral analgesic, antiallodynic and antihyperalgesic activities of the synthesized structural analogues of GABA.
Methods: The screening study included acute tissue injury, chronic constriction injury (CCI), and spinal nerve ligation (SNL) models of neuropathic pain.