Publications by authors named "Ramita Sulu"

Collagen prolyl 4-hydroxylases (C-P4H) are αβ tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the β-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the β/PDI subunit, are unknown.

View Article and Find Full Text PDF

(), which is responsible for more than a million deaths annually, uses lipids as the source of carbon and energy for its survival in the latent phase of infection. cannot synthesize all of the lipid molecules required for its growth and pathogenicity. Therefore, it relies on transporters such as the mammalian cell entry (Mce) complexes to import lipids from the host across the cell wall.

View Article and Find Full Text PDF

Degradation of fatty acids by the β-oxidation pathway results in the formation of acetyl-CoA which enters the TCA cycle for the production of ATP. In E. coli, the last three steps of the β-oxidation are catalyzed by two heterotetrameric αβ enzymes namely the aerobic trifunctional enzyme (EcTFE) and the anaerobic TFE (anEcTFE).

View Article and Find Full Text PDF

The peptide-substrate-binding (PSB) domain of collagen prolyl 4-hydroxylase (C-P4H, an α β tetramer) binds proline-rich procollagen peptides. This helical domain (the middle domain of the α subunit) has an important role concerning the substrate binding properties of C-P4H, although it is not known how the PSB domain influences the hydroxylation properties of the catalytic domain (the C-terminal domain of the α subunit). The crystal structures of the PSB domain of the human C-P4H isoform II (PSB-II) complexed with and without various short proline-rich peptides are described.

View Article and Find Full Text PDF