A series of novel thio- and seleno-barbituric acid derivatives were synthesized by varying the substituents at N1 and N3 (ethyl, methyl, allyl, and phenyl), and C5 tethered with dienyl and trienyl moieties attached to substituents such as phenyl, 2-furanyl, 2-thiophenyl, 1-naphthyl, and 3-pyridyl. The cytotoxic potential of these derivatives was evaluated by using MTT assay against melanoma cell lines expressing either wild-type (CHL-1) or mutant (UACC 903) BRAF gene. Among all, 2b and 8b were identified as the most potent compounds.
View Article and Find Full Text PDFA concise and stereoselective approach for the synthesis of key intermediates for aplysiatoxins, oscillatoxins, and nhatrangins and their utility for the total synthesis of nhatrangin A has been demonstrated. The advanced intermediates aromatic aldehyde 11 and dihydroxy acid 12 were synthesized in eight steps (44% overall yield) and three steps (55% overall yield), respectively. An asymmetric Michael addition, CBS reduction, and proline-catalyzed crossed-aldol reactions were utilized as key steps for the generation of all the chirality of main chain hydroxyaldehyde, while the appended side-chain-protected 3,4-dihydroxypentanoic acid was achieved in a shortest route, using Sharpless dihydroxylation, diol protection, and RuO4-catalyzed aromatic over-oxidation reactions.
View Article and Find Full Text PDF