The glutathione S-transferase from Plasmodium falciparum presents distinct features which are absent from mammalian GST isoenzyme counterparts. Most apparent among these are the ability to tetramerize and the presence of a flexible loop. The loop, situated between the 113-119 residues, has been reported necessary for the tetramerization process.
View Article and Find Full Text PDFHuman glutathione S-transferase P1-1 (hGST P1-1) is involved in cell detoxification processes through the conjugation of its natural substrate, reduced glutathione (GSH), with xenobiotics. GSTs are known to be overexpressed in tumors, and naturally occurring isothiocyanates, such as benzyl isothiocyanate (BITC), are effective cancer chemopreventive compounds. To identify and characterize the potential inhibitory mechanisms of GST P1-1 induced by isothiocyanate conjugates, we studied the binding of GST P1-1 and some cysteine mutants to the BITC-SG conjugate as well as to the synthetic S-(N-benzylcarbamoylmethyl)glutathione conjugate (BC-SG).
View Article and Find Full Text PDFThe binding properties of two electroactive glutathione-ferrocene conjugates that consist in glutathione attached to one or both of the cyclopentadienyl rings of ferrocene (GSFc and GSFcSG), to Schistosoma japonica glutathione S-transferase (SjGST) were studied by spectroscopy fluorescence, isothermal titration calorimetry (ITC) and differential pulse voltammetry (DPV). Such ferrocene conjugates resulted to be competitive inhibitors of glutathione S-transferase with an increased binding affinity relative to the natural substrate glutathione (GSH). We found that the conjugate having two glutathione units (GSFcSG) exhibits an affinity for SjGST approximately two orders of magnitude higher than GSH.
View Article and Find Full Text PDFDeoxyuridine triphosphate nucleotidohydrolase (dUTPase), a ubiquitous enzyme preventing a deleterious incorporation of uracil into DNA, has been thought of as a novel target for anticancer and antiviral drug design. The interaction of Plasmodium falciparum dUTPase (PfdUTPase) with deoxyuridine derivatives (dU, dUMP, dUDP and dUpNHpp) has been studied thermodynamically by both isothermal titration and differential scanning calorimetry. ITC shows no cooperativity for the binding of these derivatives.
View Article and Find Full Text PDFdUTPase (deoxyuridine 5'-triphosphate nucleotide hydrolase) is an enzyme responsible for maintaining low levels of intracellular dUTP and thus prevents uracil incorporation into DNA by DNA polymerases during replication and repair processes. The thermodynamics of binding for both dUTP and dUMP (deoxyuridine 5'-monophosphate) to the D80A mutant form of Trypanosoma cruzi dUTPase have been investigated by fluorescence spectroscopy and high-sensitivity isothermal titration calorimetry. In the presence of magnesium, approximately a 30-fold decrease in the value of the k(cat) and a 15-fold increase in the K(m) for dUTP hydrolysis was calculated while a 5-fold decrease was observed in the affinity for dUMP.
View Article and Find Full Text PDFThe nitric oxide molecule (NO) is involved in many important physiological processes and seems to be stabilized by reduced thiol species, such as S-nitrosoglutathione (GSNO). GSNO binds strongly to glutathione transferases, a major superfamily of detoxifying enzymes. We have determined the crystal structure of GSNO bound to dimeric human glutathione transferase P1-1 (hGSTP1-1) at 1.
View Article and Find Full Text PDFWe have investigated the binding of 2'-deoxyuridine 5'-monophosphate (2'-dUMP) to Leishmania major deoxyuridine 5'-triphosphate nucleotide hydrolase (dUTPase) by isothermal titration microcalorimetry under different experimental conditions. Binding to dimeric L. major dUTPase is a non-cooperative process, with a stoichiometry of 1 molecule of 2'-dUMP per subunit.
View Article and Find Full Text PDFThere has been some speculation about the salt independence of Schistosoma japonicum glutathione S-transferase (Sj26GST, EC. 2.5.
View Article and Find Full Text PDF