Publications by authors named "Ramiro Juncos"

Angiotensin II (AngII) causes hypertension (HTN) and promotes renal injury while simultaneously inducing reno-protective enzymes like heme oxygenase-1 (HO-1). We examined the modulatory role of HO on sub-pressor angiotensin II (SP-AngII) induced renal inflammation and injury. We first tested whether the SP-AngII-induced renal dysfunction, inflammation and injury are exacerbated by either preventing (chronic HO-1 inhibition) or reversing (late HO-1 inhibition) SP-AngII-induced HO (using tin protoporphyrin; SnPP).

View Article and Find Full Text PDF

Sickle cell disease (SCD), the most common inherited hematologic disorder in the United States and the most common single gene disorder in the world, causes substantial morbidity and mortality. The major pathobiologic processes that underlie SCD include vaso-occlusion, inflammation, procoagulant processes, hemolysis, and altered vascular reactivity. The present study examined the vasoactive response to a-adrenergic activation in a murine model of SCD.

View Article and Find Full Text PDF

Neuronal nitric oxide synthase (nNOS), which is abundantly expressed in the macula densa cells, attenuates tubuloglomerular feedback (TGF). We hypothesize that splice variants of nNOS are expressed in the macula densa, and nNOS-beta is a salt-sensitive isoform that modulates TGF. Sprague-Dawley rats received a low-, normal-, or high-salt diet for 10 days and levels of the nNOS-alpha, nNOS-beta, and nNOS-gamma were measured in the macula densa cells isolated with laser capture microdissection.

View Article and Find Full Text PDF

Macula densa cells produce superoxide (O2-) during tubuloglomerular feedback primarily via NAD(P)H oxidase (NOX). The purpose of the present study was to determine NOXs expressed by the macula densa and the role of each one in NaCl-induced O2- production. To identify which isoforms are expressed, we applied single-cell RT-PCR to macula densa cells isolated by laser capture microdissection and to MMDD1 cells (a macula densa-like cell line).

View Article and Find Full Text PDF

Superoxide (O2-) increases Na+ reabsorption in the thick ascending limb (THAL) by enhancing Na/K/2Cl cotransport. However, the effects of O2- on other THAL transporters, such as Na(+)/H+ exchangers, are unknown. We hypothesized that O2- stimulates Na(+)/H+ exchange in the THAL.

View Article and Find Full Text PDF

Superoxide (O2-) enhances Na reabsorption by the thick ascending limb (THAL). Na absorption in this segment involves the Na-K-2Cl cotransporter, K channel, and Na-K-ATPase. We hypothesized that O2- stimulates NaCl absorption primarily by enhancing Na-K-2Cl cotransport.

View Article and Find Full Text PDF