We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures.
View Article and Find Full Text PDFIn the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains.
View Article and Find Full Text PDFThis work describes the synthesis of chlorapatite single crystals using the molten salt method with CaCl(2) as a flux. By manipulating the processing conditions (amount of flux, firing time and temperature, and cooling rates) it is possible to manipulate the crystal morphology from microscopic fibres to large crystals (up to few millimetre long and ~100 μm thick). The crystal roughness can be controlled to achieve very flat surfaces by changing the melt composition "in situ" at high temperature.
View Article and Find Full Text PDFActa Biomater
May 2008
Copolymerization of hydroxyethyl methacrylate (HEMA) with a methacrylated-derivative of beta-cyclodextrin (beta-CD) was evaluated as a way to obtain hydrogels with tunable mechanical and drug loading and release properties, particularly for preparing medicated soft contact lenses. A fully methacrylated beta-CD monomer was synthesized and added to the HEMA and cross-linker solution at concentrations ranging from 0.042 to 0.
View Article and Find Full Text PDF