Publications by authors named "Ramirez-Prado J"

The complex metabolism of has been extensively studied, including its response to oxygen availability. The ArcA/B two-component system (TCS) is the key regulator for the transition between these two environmental conditions and has been thoroughly characterized using genetic and biochemical approaches. Still, to date, limited structural data is available.

View Article and Find Full Text PDF

The signal transduction paradigm in bacteria involves two-component systems (TCSs). are archaea that may have originated the current eukaryotic lifeforms. Most research on these archaea has focused on eukaryotic-like features, such as genes involved in phagocytosis, cytoskeleton structure, and vesicle trafficking.

View Article and Find Full Text PDF

Following recent mimosoid phylogenetic and phylogenomic studies demonstrating the non-monophyly of the genus , we present a new molecular phylogeny focused on the neotropical species in the genus, with much denser taxon sampling than previous studies. Our aims were to test the monophyly of the neotropical section Arthrosamanea, resolve species relationships, and gain insights into the evolution of fruit morphology. We perform a Bayesian phylogenetic analysis of sequences of nuclear internal and external transcribed spacer regions and trace the evolution of fruit dehiscence and lomentiform pods.

View Article and Find Full Text PDF

Pathogenic fungal infection success depends on the ability to escape the immune response. Most strategies for fungal infection control are focused on the inhibition of virulence factors and increasing the effectiveness of antifungal drugs. Nevertheless, little attention has been focused on their physiological resistance to the host immune system.

View Article and Find Full Text PDF

Background: RNA-DNA hybrid (R-loop)-associated long noncoding RNAs (lncRNAs), including the Arabidopsis lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO), are emerging as important regulators of three-dimensional chromatin conformation and gene transcriptional activity.

Results: Here, we show that in addition to the PRC1-component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), APOLO interacts with the methylcytosine-binding protein VARIANT IN METHYLATION 1 (VIM1), a conserved homolog of the mammalian DNA methylation regulator UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1). The APOLO-VIM1-LHP1 complex directly regulates the transcription of the auxin biosynthesis gene YUCCA2 by dynamically determining DNA methylation and H3K27me3 deposition over its promoter during the plant thermomorphogenic response.

View Article and Find Full Text PDF

Organisms need mechanisms to perceive the environment and respond accordingly to environmental changes or the presence of hazards. Transcription factors (TFs) are required for cells to respond to the environment by controlling the expression of genes needed. has been the model bacterium for many decades, and still, there are features embedded in its genome that remain unstudied.

View Article and Find Full Text PDF

In this work, we inferred the gene regulatory network (GRN) of the fungus by using the regulatory networks of FGSC A4, OR74A, S288c, and PH-1 as templates for sequence comparisons. Topological properties to infer the role of transcription factors (TFs) and to identify functional modules were calculated in the GRN. From these analyzes, five TFs were identified as hubs, including FOXG_04688 and FOXG_05432, which regulate 2,404 and 1,864 target genes, respectively.

View Article and Find Full Text PDF

The fungal cell wall is an attractive structure to look for new antifungal drug targets and for understanding the host-fungus interaction. is one of the main causative agents of both human and animal sporotrichosis and currently is the species most studied of the genus. The cell wall of this organism has been previously analyzed, and rhamnoconjugates are signature molecules found on the surface of both mycelia and yeast-like cells.

View Article and Find Full Text PDF

In monoecious melon (Cucumis melo), sex is determined by the differential expression of sex determination genes (SDGs) and adoption of sex-specific transcriptional programs. Histone modifications such as H3K27me3 have been previously shown to be a hallmark associated to unisexual flower development in melon; yet, no genetic approaches have been conducted for elucidating the roles of H3K27me3 writers, readers, and erasers in this process. Here we show that melon homologs to Arabidopsis LHP1, CmLHP1A and B, redundantly control several aspects of plant development, including sex expression.

View Article and Find Full Text PDF

Characterizing the molecular mechanisms regulating gene expression is crucial for understanding the regulatory processes underlying physiological responses to environmental and developmental signals in eukaryotes. The covalent modification of histones contributes to the compaction levels of chromatin, as well as the recruitment of the transcriptional machinery to specific loci, facilitating metastable changes in gene activity. ChIP-seq (Chromatin Immunoprecipitation followed by sequencing) has become the gold standard method for determining histone modification profiles among different organisms, tissues, and genotypes.

View Article and Find Full Text PDF

For diagnosis of positive-sense single-stranded RNA viruses, primers are usually raised against the sequence encoding capsid proteins, since structural proteins are more conserved. This chapter focuses on the design of primers for a group of novel viruses lacking a capsid, known as papaya Umbra-like viruses (unassigned genus) associated with Papaya Sticky Disease, which represent a threat to papaya production. Based on sequence alignments of a region encoding the RNA-dependent RNA Polymerase, universal primers to detect all the known viruses from four countries are proposed.

View Article and Find Full Text PDF

In animals, distant H3K27me3-marked Polycomb targets can establish physical interactions forming repressive chromatin hubs. In plants, growing evidence suggests that H3K27me3 acts directly or indirectly to regulate chromatin interactions, although how this histone modification modulates 3D chromatin architecture remains elusive. To decipher the impact of the dynamic deposition of H3K27me3 on the nuclear interactome, we combined genetics, transcriptomics, and several 3D epigenomic approaches.

View Article and Find Full Text PDF

Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development, and adaptation to environmental fluctuations of most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in , EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies have focused on the three-dimensional organization of chromatin in plant nuclei, with advancements in chromatin conformation capture techniques facilitating research in complex genomes, including crops.
  • These studies have uncovered intricate mechanisms of plant nuclear architecture and highlighted gaps in our understanding of this area, particularly in comparison to mammals.
  • The research also discusses specific plant structures like TAD-like domains and the influence of polyploidization on chromatin topology, which affects gene activity and evolution in modern crops.
View Article and Find Full Text PDF

The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation.

View Article and Find Full Text PDF

Background: Polyploidy is ubiquitous in eukaryotic plant and fungal lineages, and it leads to the co-existence of several copies of similar or related genomes in one nucleus. In plants, polyploidy is considered a major factor in successful domestication. However, polyploidy challenges chromosome folding architecture in the nucleus to establish functional structures.

View Article and Find Full Text PDF

Auxins are one of the most important and studied phytohormones in nature. Auxin signaling and perception take place in the cytosol, where the auxin is sensed. Then, in the nucleus, the auxin response factors (ARF) promote the expression of early-response genes.

View Article and Find Full Text PDF

Currently, there is a need of non-computationally-intensive bioinformatics tools to cope with the increase of large datasets produced by Next Generation Sequencing technologies. We present a simple and robust bioinformatics pipeline to search for novel enzymes in metagenomic sequences. The strategy is based on pattern searching using as reference conserved motifs coded as regular expressions.

View Article and Find Full Text PDF

Polycomb repressive complexes (PRCs) have been traditionally associated with the regulation of developmental processes in various organisms, including higher plants. However, similar to other epigenetic regulators, there is accumulating evidence for their role in the regulation of stress and immune-related pathways. In the current study we show that the PRC1 protein LHP1 is required for the repression of the MYC2 branch of jasmonic acid (JA)/ethylene (ET) pathway of immunity.

View Article and Find Full Text PDF

The begomoviruses (BGVs) are plant pathogens that evolved in the Old World during the Cretaceous and arrived to the New World (NW) in the Cenozoic era. A subgroup of NW BGVs, the " (SLCV) lineage" (S-Lin), includes viruses with unique characteristics. To get clues on the evolutionary origin of this lineage, a search for divergent members was undertaken.

View Article and Find Full Text PDF

In order to identify common and specific enzymatic activities associated with the metabolism of the three cellular domains of life, the conservation and variations between the enzyme contents of Bacteria, Archaea, and Eukarya organisms were evaluated. To this end, the content of enzymes belonging to a particular pathway and their abundance and distribution in 1507 organisms that have been annotated and deposited in the KEGG database were assessed. In addition, we evaluated the consecutive enzymatic reaction pairs obtained from metabolic pathway reactions and transformed into sequences of enzymatic reactions, with catalytic activities encoded in the Enzyme Commission numbers, which are linked by a substrate.

View Article and Find Full Text PDF

The aim of this study was to identify and characterize laccase genes produced by Bm-2 in a liquid medium, both with and without induction. The amplification of 5'and 3'regions of laccase sequences was obtained by the RACE-PCR method, and these were assembled to obtain a cDNA of total length. Two new laccase genes were isolated from basal medium (-) and lignocellulosic grapefruit substrate (-), both encoding open reading frames of 2566 bp.

View Article and Find Full Text PDF

The pathogenic clade of the genus comprises the etiological agents of sporotrichosis, a worldwide emergent disease. Despite the growing understanding of their successful pathogen traits, there is little information on genome sizes and ploidy within the genus. Therefore, in this work, we evaluated the ploidy of four species of the genus, specifically , , , and .

View Article and Find Full Text PDF