Habitat loss is the leading cause of the global decline in biodiversity, but the influence of human pressure within the matrix surrounding habitat fragments remains poorly understood. Here, we measure the relationship between fragmentation (the degree of fragmentation and the degree of patch isolation), matrix condition (measured as the extent of high human footprint levels), and the change in extinction risk of 4,426 terrestrial mammals. We find that the degree of fragmentation is strongly associated with changes in extinction risk, with higher predictive importance than life-history traits and human pressure variables.
View Article and Find Full Text PDFLand free of direct anthropogenic disturbance is considered essential for achieving biodiversity conservation outcomes but is rapidly eroding. In response, many nations are increasing their protected area (PA) estates, but little consideration is given to the context of the surrounding landscape. This is despite the fact that structural connectivity between PAs is critical in a changing climate and mandated by international conservation targets.
View Article and Find Full Text PDFProtected areas (PAs) are a foundational and essential strategy for reducing biodiversity loss. However, many PAs around the world exist on paper only; thus, while logging and habitat conversion may be banned in these areas, illegal activities often continue to cause alarming habitat destruction. In such cases, the presence of armed conflict may ultimately prevent incursions to a greater extent than the absence of conflict.
View Article and Find Full Text PDF