Publications by authors named "Ramin Arvin"

Introduction: Due to a variety of secondary tasks performed by drivers, distracted driving has become a critical concern. At 50 mph, sending/reading a text for 5 seconds is equivalent to driving the length of a football field (360 ft) with eyes closed. A fundamental understanding of how distractions lead to crashes is needed to develop appropriate countermeasure strategies.

View Article and Find Full Text PDF

Vehicle automation, manifested in self-driving cars, promises to provide safe mobility by reducing human errors. While the testing of automated vehicles (AVs) has improved their performance in recent years, automation technologies face challenges such as uncertainty of safety impacts in mixed traffic with human-driven vehicles. This study aims to examine the gaps in AV safety performance and identify what will be required on a preferential basis for AVs to guarantee an acceptable level of safety performance, especially in mixed traffic, by conducting a thorough analysis of crashes involving levels 2-3 AVs.

View Article and Find Full Text PDF

As automated vehicles are deployed across the world, it has become critically important to understand how these vehicles interact with each other, as well as with other conventional vehicles on the road. One such method to achieve a deeper understanding of the safety implications for Automated Vehicles (AVs) is to analyze instances where AVs were involved in crashes. Unfortunately, this poses a steep challenge to crash-scene investigators.

View Article and Find Full Text PDF

Accurate crash frequency prediction is critical for proactive safety management. The emerging connected vehicles technology provides us with a wealth of vehicular motion data, which enables a better connection between crash frequency and driving behaviors. However, appropriately dealing with the spatial dependence of crash frequency and multitudinous driving features has been a difficult but critical challenge in the prediction process.

View Article and Find Full Text PDF

This study explores how different driving errors, violations, and roadway environments contribute to safety-critical events through instability in driving speed. We harness a subsample (N = 9239) of the naturalistic driving study (NDS) data collected through the Second Strategic Highway Research Program (SHRP2). From a methodological standpoint, we use the safe systems approach relying on path analysis to jointly model outcomes.

View Article and Find Full Text PDF

About 40 percent of motor vehicle crashes in the US are related to intersections. To deal with such crashes, Safety Performance Functions (SPFs) are vital elements of the predictive methods used in the Highway Safety Manual. The predictions of crash frequencies and potential reductions due to countermeasures are based on exposure and geometric variables.

View Article and Find Full Text PDF

Extensive driver behavior and performance information provided by real-world video surveillance and sensor data in the SHRP2 Naturalistic Driving Study has enabled the examination of new layers and pathways leading to crash outcomes. We note that the prominence of hazards and the importance of recognizing them vary systematically across single vs. multi-vehicle crashes, and address a fundamental question about safety: why do around three-quarters of drivers involved in single-vehicle crashes not recognize, perceive, or react to the precipitating event (PE)? Using a path-analytic framework through marginal effects, this study investigates factors correlated to recognition of the PE in single-vehicle events, and how these correlations may act as crash precursors.

View Article and Find Full Text PDF

The introduction of Automated Vehicles (AVs) into the transportation network is expected to improve system performance, but the impacts of AVs in mixed traffic streams have not been clearly studied. As AV's market penetration increases, the interactions between conventional vehicles and AVs are inevitable but by no means clear. This study aims to create new knowledge by quantifying the behavioral changes caused when conventional human-driven vehicles follow AVs and investigating the impact of these changes (if any) on safety and the environment.

View Article and Find Full Text PDF

Transportation safety is highly correlated with driving behavior, especially human error playing a key role in a large portion of crashes. Modern instrumentation and computational resources allow for the monitorization of driver, vehicle, and roadway/environment to extract leading indicators of crashes from multi-dimensional data streams. To quantify variations that are beyond normal in driver behavior and vehicle kinematics, the concept of volatility is applied.

View Article and Find Full Text PDF

Distracted and impaired driving is a key contributing factor in crashes, leading to about 35% of all transportation-related deaths in recent years. Along these lines, cognitive issues like inattentiveness can further increase the chances of crash involvement. Despite its prevalence and importance, little is known about how the duration of these distractions is associated with critical events, such as crashes or near-crashes.

View Article and Find Full Text PDF

Automated vehicles are emerging on the transportation networks as manufacturers test their automated driving system (ADS) capabilities in complex real-world environments in testing operations like California's Autonomous Vehicle Tester Program. A more comprehensive understanding of the ADS safety performances can be established through the California Department of Motor Vehicle disengagement and crash reports. This study comprehensively examines the safety performances (159,840 disengagements, 124 crashes, and 3,669,472 automated vehicle miles traveled by the manufacturers) documented since the inauguration of the testing program.

View Article and Find Full Text PDF

While the cost of crashes exceeds $1 Trillion a year in the U.S. alone, the availability of high-resolution naturalistic driving data provides an opportunity for researchers to conduct an in-depth analysis of crash contributing factors, and design appropriate interventions.

View Article and Find Full Text PDF

Global road safety records demonstrate spatial variation of comprehensive cost of traffic crashes across countries. To the best of our knowledge, no study has explored the variation of this matter at a local geographical level. This study proposes a method to estimate the comprehensive crash cost at the zonal level by using person-injury cost.

View Article and Find Full Text PDF

Connected and automated vehicles have enabled researchers to use big data for development of new metrics that can enhance transportation safety. Emergence of such a big data coupled with computational power of modern computers have enabled us to obtain deeper understanding of instantaneous driving behavior by applying the concept of "driving volatility" to quantify variations in driving behavior. This paper brings in a methodology to quantify variations in vehicular movements utilizing longitudinal and lateral volatilities and proactively studies the impact of instantaneous driving behavior on type of crashes at intersections.

View Article and Find Full Text PDF

The use of cell phone is a significant source of driver distraction. Phone use while driving can impair a number of factors critical for safe driving which can cause serious traffic safety problems. The objective of this paper was to investigate the frequency of using cell phones while driving in Iran's roads through an observational survey with a random sample of drivers, to recognize contributing factors to cell phone usage and to understand the magnitude of the problem.

View Article and Find Full Text PDF